基于深度学习的微电网故障分类

Sainesh Karan, H. Yeh
{"title":"基于深度学习的微电网故障分类","authors":"Sainesh Karan, H. Yeh","doi":"10.1109/IGESSC50231.2020.9285101","DOIUrl":null,"url":null,"abstract":"In this work, two neural network models i.e. Long - Short Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) are employed to classify faults in microgrids. We used Matlab/Simulink to model a modified IEEE-13 bus feeder and simulate 11 types of faults to generate training and testing data. Additive White Gaussian Noise (AWGN) and Additive Impulsive Gaussian Noise (AIGN) are added to the data to make it closer to real-world data. The data is pre-processed using Discrete Wavelet Transform (DWT) and Multi-Resolution Analysis (MRA). The investigation showed that the LSTM network out-performed the CNN classifier and achieved high accuracy in classifying the faults using only one signal cycle of post fault voltage.","PeriodicalId":437709,"journal":{"name":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fault Classification in Microgrids using Deep Learning\",\"authors\":\"Sainesh Karan, H. Yeh\",\"doi\":\"10.1109/IGESSC50231.2020.9285101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, two neural network models i.e. Long - Short Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) are employed to classify faults in microgrids. We used Matlab/Simulink to model a modified IEEE-13 bus feeder and simulate 11 types of faults to generate training and testing data. Additive White Gaussian Noise (AWGN) and Additive Impulsive Gaussian Noise (AIGN) are added to the data to make it closer to real-world data. The data is pre-processed using Discrete Wavelet Transform (DWT) and Multi-Resolution Analysis (MRA). The investigation showed that the LSTM network out-performed the CNN classifier and achieved high accuracy in classifying the faults using only one signal cycle of post fault voltage.\",\"PeriodicalId\":437709,\"journal\":{\"name\":\"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGESSC50231.2020.9285101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC50231.2020.9285101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用长短期记忆(LSTM)网络和卷积神经网络(CNN)两种神经网络模型对微电网故障进行分类。利用Matlab/Simulink对改进后的IEEE-13总线馈线进行建模,并对11种故障进行仿真,生成训练和测试数据。加性高斯白噪声(AWGN)和加性脉冲高斯噪声(AIGN)被添加到数据中,使其更接近真实数据。采用离散小波变换(DWT)和多分辨率分析(MRA)对数据进行预处理。研究表明,LSTM网络优于CNN分类器,仅使用故障后电压的一个信号周期就能达到较高的故障分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Classification in Microgrids using Deep Learning
In this work, two neural network models i.e. Long - Short Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) are employed to classify faults in microgrids. We used Matlab/Simulink to model a modified IEEE-13 bus feeder and simulate 11 types of faults to generate training and testing data. Additive White Gaussian Noise (AWGN) and Additive Impulsive Gaussian Noise (AIGN) are added to the data to make it closer to real-world data. The data is pre-processed using Discrete Wavelet Transform (DWT) and Multi-Resolution Analysis (MRA). The investigation showed that the LSTM network out-performed the CNN classifier and achieved high accuracy in classifying the faults using only one signal cycle of post fault voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信