基于神经网络的交直流输电系统故障识别

N. Kandil, V. Sood, K. Khorasani, R. Patel
{"title":"基于神经网络的交直流输电系统故障识别","authors":"N. Kandil, V. Sood, K. Khorasani, R. Patel","doi":"10.1109/PICA.1991.160590","DOIUrl":null,"url":null,"abstract":"The possibility of using neural networks to identify faults that may have occurred in an AC-DC power system is explored. Based on the ability of these networks to distinguish reliably between different types of fault, appropriate control measures can be taken to improve the dynamic performance of the AC-DC power system. Three different neural network architectures to distinguish between different types of fault on the AC-DC system are proposed, and a comparison between them is made.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Fault identification in an AC-DC transmission system using neural networks\",\"authors\":\"N. Kandil, V. Sood, K. Khorasani, R. Patel\",\"doi\":\"10.1109/PICA.1991.160590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility of using neural networks to identify faults that may have occurred in an AC-DC power system is explored. Based on the ability of these networks to distinguish reliably between different types of fault, appropriate control measures can be taken to improve the dynamic performance of the AC-DC power system. Three different neural network architectures to distinguish between different types of fault on the AC-DC system are proposed, and a comparison between them is made.<<ETX>>\",\"PeriodicalId\":287152,\"journal\":{\"name\":\"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1991.160590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

探讨了用神经网络识别交直流电力系统可能发生的故障的可能性。基于这些网络可靠区分不同类型故障的能力,可以采取适当的控制措施来改善交直流电力系统的动态性能。提出了三种不同的神经网络结构来区分交直流系统中不同类型的故障,并对它们进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault identification in an AC-DC transmission system using neural networks
The possibility of using neural networks to identify faults that may have occurred in an AC-DC power system is explored. Based on the ability of these networks to distinguish reliably between different types of fault, appropriate control measures can be taken to improve the dynamic performance of the AC-DC power system. Three different neural network architectures to distinguish between different types of fault on the AC-DC system are proposed, and a comparison between them is made.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信