工业论文:在有限预算下测试模拟设计的替代模型-带隙案例研究

R. Bloem, Alberto Larrauri, Roland Lengfeldner, Cristinel Mateis, D. Ničković, Bjorn Ziegler
{"title":"工业论文:在有限预算下测试模拟设计的替代模型-带隙案例研究","authors":"R. Bloem, Alberto Larrauri, Roland Lengfeldner, Cristinel Mateis, D. Ničković, Bjorn Ziegler","doi":"10.1109/CODES-ISSS55005.2022.00016","DOIUrl":null,"url":null,"abstract":"Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"591 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget – a Bandgap Case Study\",\"authors\":\"R. Bloem, Alberto Larrauri, Roland Lengfeldner, Cristinel Mateis, D. Ničković, Bjorn Ziegler\",\"doi\":\"10.1109/CODES-ISSS55005.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.\",\"PeriodicalId\":129167,\"journal\":{\"name\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"591 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODES-ISSS55005.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测试模拟集成电路(IC)设计是出了名的困难。从复杂模拟设计的精确晶体管级模型模拟几十毫秒可能需要长达两周的计算。因此,在模拟集成电路的后期开发阶段可以执行的测试数量可能非常有限。我们利用机器学习(ML)的最新进展,并提出两种技术,人工神经网络(ANN)和高斯过程,从现有的测试套件中学习代理模型。然后,我们用贝叶斯优化来探索代理模型,以指导生成额外的测试。我们使用一个工业带隙案例研究来评估这两种方法,并证明贝叶斯优化在有效地生成具有约束努力的互补测试方面的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industry Paper: Surrogate Models for Testing Analog Designs under Limited Budget – a Bandgap Case Study
Testing analog integrated circuit (IC) designs is notoriously hard. Simulating tens of milliseconds from an accurate transistor level model of a complex analog design can take up to two weeks of computation. Therefore, the number of tests that can be executed during the late development stage of an analog IC can be very limited. We leverage the recent advancements in machine learning (ML) and propose two techniques, artificial neural networks (ANN) and Gaussian processes, to learn a surrogate model from an existing test suite. We then explore the surrogate model with Bayesian optimization to guide the generation of additional tests. We use an industrial bandgap case study to evaluate the two approaches and demonstrate the virtue of Bayesian optimization in efficiently generating complementary tests with constrained effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信