利用矩阵张量分解理解城市时空使用模式

Thirunavukarasu Balasubramaniam, R. Nayak, C. Yuen
{"title":"利用矩阵张量分解理解城市时空使用模式","authors":"Thirunavukarasu Balasubramaniam, R. Nayak, C. Yuen","doi":"10.1109/ICDMW.2018.00216","DOIUrl":null,"url":null,"abstract":"Automated understanding of spatio-temporal usage patterns of real-world applications are significant in urban planning. With the capability of smartphones collecting various information using inbuilt sensors, the smart city data is enriched with multiple contexts. Whilst tensor factorization has been successfully used to capture latent factors (patterns) exhibited by the real-world datasets, the multifaceted nature of smart city data needs an improved modeling to utilize multiple contexts in sparse condition. Thus, in our ongoing research, we aim to model this data with a novel Context-Aware Nonnegative Coupled Sparse Matrix Tensor (CAN-CSMT) framework which imposes sparsity constraint to learn the true factors in sparse data. We also aim to develop a fast and efficient factorization algorithm to deal with the scalability problem persistent in the state-of-the-art factorization algorithms.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Understanding Urban Spatio-Temporal Usage Patterns Using Matrix Tensor Factorization\",\"authors\":\"Thirunavukarasu Balasubramaniam, R. Nayak, C. Yuen\",\"doi\":\"10.1109/ICDMW.2018.00216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated understanding of spatio-temporal usage patterns of real-world applications are significant in urban planning. With the capability of smartphones collecting various information using inbuilt sensors, the smart city data is enriched with multiple contexts. Whilst tensor factorization has been successfully used to capture latent factors (patterns) exhibited by the real-world datasets, the multifaceted nature of smart city data needs an improved modeling to utilize multiple contexts in sparse condition. Thus, in our ongoing research, we aim to model this data with a novel Context-Aware Nonnegative Coupled Sparse Matrix Tensor (CAN-CSMT) framework which imposes sparsity constraint to learn the true factors in sparse data. We also aim to develop a fast and efficient factorization algorithm to deal with the scalability problem persistent in the state-of-the-art factorization algorithms.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对现实世界应用的时空使用模式的自动理解在城市规划中具有重要意义。随着智能手机通过内置传感器收集各种信息的能力,智慧城市数据丰富了多种背景。虽然张量分解已经成功地用于捕获现实世界数据集所展示的潜在因素(模式),但智慧城市数据的多面性需要改进建模,以利用稀疏条件下的多个上下文。因此,在我们正在进行的研究中,我们的目标是用一种新的上下文感知非负耦合稀疏矩阵张量(CAN-CSMT)框架对这些数据进行建模,该框架施加稀疏性约束以学习稀疏数据中的真实因素。我们还致力于开发一种快速有效的分解算法,以解决目前最先进的分解算法中存在的可扩展性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Urban Spatio-Temporal Usage Patterns Using Matrix Tensor Factorization
Automated understanding of spatio-temporal usage patterns of real-world applications are significant in urban planning. With the capability of smartphones collecting various information using inbuilt sensors, the smart city data is enriched with multiple contexts. Whilst tensor factorization has been successfully used to capture latent factors (patterns) exhibited by the real-world datasets, the multifaceted nature of smart city data needs an improved modeling to utilize multiple contexts in sparse condition. Thus, in our ongoing research, we aim to model this data with a novel Context-Aware Nonnegative Coupled Sparse Matrix Tensor (CAN-CSMT) framework which imposes sparsity constraint to learn the true factors in sparse data. We also aim to develop a fast and efficient factorization algorithm to deal with the scalability problem persistent in the state-of-the-art factorization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信