{"title":"一个可扩展的高效事件处理内核","authors":"Mohammad Sadoghi","doi":"10.1145/2213598.2213602","DOIUrl":null,"url":null,"abstract":"The efficient processing of large collections of patterns (Boolean expressions, XPath queries, or continuous SQL queries) over data streams plays a central role in major data intensive applications ranging from user-centric processing and personalization to real-time data analysis. On the one hand, emerging user-centric applications, including computational advertising and selective information dissemination, demand determining and presenting to an end-user only the most relevant content that is both user-consumable and suitable for limited screen real estate of target (mobile) devices. We achieve these user-centric requirements through novel high-dimensional indexing structures and (parallel) algorithms. On the other hand, applications in real-time data analysis, including computational finance and intrusion detection, demand meeting stringent subsecond processing requirements and providing high-frequency and low-latency event processing over data streams. We achieve real-time data analysis requirements by leveraging reconfigurable hardware -- FPGAs -- to sustain line-rate processing by exploiting unprecedented degrees of parallelism and potential for pipelining, only available through custom-built, application-specific, and low-level logic design. Finally, we conduct a comprehensive evaluation to demonstrate the superiority of our proposed techniques in comparison with state-of-the-art algorithms designed for event processing.","PeriodicalId":335125,"journal":{"name":"PhD '12","volume":"221 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards an extensible efficient event processing kernel\",\"authors\":\"Mohammad Sadoghi\",\"doi\":\"10.1145/2213598.2213602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient processing of large collections of patterns (Boolean expressions, XPath queries, or continuous SQL queries) over data streams plays a central role in major data intensive applications ranging from user-centric processing and personalization to real-time data analysis. On the one hand, emerging user-centric applications, including computational advertising and selective information dissemination, demand determining and presenting to an end-user only the most relevant content that is both user-consumable and suitable for limited screen real estate of target (mobile) devices. We achieve these user-centric requirements through novel high-dimensional indexing structures and (parallel) algorithms. On the other hand, applications in real-time data analysis, including computational finance and intrusion detection, demand meeting stringent subsecond processing requirements and providing high-frequency and low-latency event processing over data streams. We achieve real-time data analysis requirements by leveraging reconfigurable hardware -- FPGAs -- to sustain line-rate processing by exploiting unprecedented degrees of parallelism and potential for pipelining, only available through custom-built, application-specific, and low-level logic design. Finally, we conduct a comprehensive evaluation to demonstrate the superiority of our proposed techniques in comparison with state-of-the-art algorithms designed for event processing.\",\"PeriodicalId\":335125,\"journal\":{\"name\":\"PhD '12\",\"volume\":\"221 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhD '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213598.2213602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhD '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213598.2213602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards an extensible efficient event processing kernel
The efficient processing of large collections of patterns (Boolean expressions, XPath queries, or continuous SQL queries) over data streams plays a central role in major data intensive applications ranging from user-centric processing and personalization to real-time data analysis. On the one hand, emerging user-centric applications, including computational advertising and selective information dissemination, demand determining and presenting to an end-user only the most relevant content that is both user-consumable and suitable for limited screen real estate of target (mobile) devices. We achieve these user-centric requirements through novel high-dimensional indexing structures and (parallel) algorithms. On the other hand, applications in real-time data analysis, including computational finance and intrusion detection, demand meeting stringent subsecond processing requirements and providing high-frequency and low-latency event processing over data streams. We achieve real-time data analysis requirements by leveraging reconfigurable hardware -- FPGAs -- to sustain line-rate processing by exploiting unprecedented degrees of parallelism and potential for pipelining, only available through custom-built, application-specific, and low-level logic design. Finally, we conduct a comprehensive evaluation to demonstrate the superiority of our proposed techniques in comparison with state-of-the-art algorithms designed for event processing.