情感建模的基因搜索特征选择:报告偏好的案例研究

AFFINE '10 Pub Date : 2010-10-29 DOI:10.1145/1877826.1877832
H. P. Martínez, Georgios N. Yannakakis
{"title":"情感建模的基因搜索特征选择:报告偏好的案例研究","authors":"H. P. Martínez, Georgios N. Yannakakis","doi":"10.1145/1877826.1877832","DOIUrl":null,"url":null,"abstract":"Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built. The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method is capable of picking subsets of features that generate more accurate affective models.","PeriodicalId":433717,"journal":{"name":"AFFINE '10","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Genetic search feature selection for affective modeling: a case study on reported preferences\",\"authors\":\"H. P. Martínez, Georgios N. Yannakakis\",\"doi\":\"10.1145/1877826.1877832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built. The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method is capable of picking subsets of features that generate more accurate affective models.\",\"PeriodicalId\":433717,\"journal\":{\"name\":\"AFFINE '10\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFFINE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1877826.1877832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFFINE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877826.1877832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

自动特征选择是生成成功的情感计算模型的关键步骤。本文提出了一种基于遗传搜索的特征选择方法,该方法是一种全局搜索算法,用于提高所建立的情感模型的准确性。我们对该方法进行了测试,并将其与来自游戏调查实验的数据集中的顺序前向特征选择和随机搜索进行了比较,该数据集包含双峰输入特征(生理和游戏玩法),并表达了成对的情感偏好。结果表明,所提出的方法能够选择产生更准确的情感模型的特征子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic search feature selection for affective modeling: a case study on reported preferences
Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built. The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method is capable of picking subsets of features that generate more accurate affective models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信