{"title":"环境空气中农业污染物浓度的预测","authors":"S. Cryer, I. Wesenbeeck","doi":"10.5772/INTECHOPEN.86091","DOIUrl":null,"url":null,"abstract":"Monitoring ambient air to assess environmental exposure and risk for volatile agricultural chemicals requires extensive resources and logistical effort. The cost and technical limitations of monitoring can be mitigated using a validated air dispersion model to simulate concentrations of volatile organic chemicals in ambient air. The SOil Fumigant Exposure Assessment (SOFEA) model was developed to explore volatile pesticide exposure and bystander risk. SOFEA assembles sources and source strengths, uses weather data from the region of interest, and executes an air dispersion model (AERMOD, ISCST3) to simulate pesticide concentrations at user defined receptors that can be used in exposure and risk assessment. This work highlights SOFEA development from inception and modifications over the last 1.5 decades, to the current delivery within the public domain. Various examples for the soil fumigant 1,3-dichloropropene are provided.","PeriodicalId":331562,"journal":{"name":"Atmospheric Air Pollution and Monitoring","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Agricultural Contaminant Concentrations in Ambient Air\",\"authors\":\"S. Cryer, I. Wesenbeeck\",\"doi\":\"10.5772/INTECHOPEN.86091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring ambient air to assess environmental exposure and risk for volatile agricultural chemicals requires extensive resources and logistical effort. The cost and technical limitations of monitoring can be mitigated using a validated air dispersion model to simulate concentrations of volatile organic chemicals in ambient air. The SOil Fumigant Exposure Assessment (SOFEA) model was developed to explore volatile pesticide exposure and bystander risk. SOFEA assembles sources and source strengths, uses weather data from the region of interest, and executes an air dispersion model (AERMOD, ISCST3) to simulate pesticide concentrations at user defined receptors that can be used in exposure and risk assessment. This work highlights SOFEA development from inception and modifications over the last 1.5 decades, to the current delivery within the public domain. Various examples for the soil fumigant 1,3-dichloropropene are provided.\",\"PeriodicalId\":331562,\"journal\":{\"name\":\"Atmospheric Air Pollution and Monitoring\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Air Pollution and Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.86091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Air Pollution and Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Agricultural Contaminant Concentrations in Ambient Air
Monitoring ambient air to assess environmental exposure and risk for volatile agricultural chemicals requires extensive resources and logistical effort. The cost and technical limitations of monitoring can be mitigated using a validated air dispersion model to simulate concentrations of volatile organic chemicals in ambient air. The SOil Fumigant Exposure Assessment (SOFEA) model was developed to explore volatile pesticide exposure and bystander risk. SOFEA assembles sources and source strengths, uses weather data from the region of interest, and executes an air dispersion model (AERMOD, ISCST3) to simulate pesticide concentrations at user defined receptors that can be used in exposure and risk assessment. This work highlights SOFEA development from inception and modifications over the last 1.5 decades, to the current delivery within the public domain. Various examples for the soil fumigant 1,3-dichloropropene are provided.