不确定公路环境下基于深度强化学习的自主入匝道合并策略

Sifan Wu, Daxin Tian, Jianshan Zhou, Xuting Duan, Zhengguo Sheng, Dezong Zhao
{"title":"不确定公路环境下基于深度强化学习的自主入匝道合并策略","authors":"Sifan Wu, Daxin Tian, Jianshan Zhou, Xuting Duan, Zhengguo Sheng, Dezong Zhao","doi":"10.1109/ICUS55513.2022.9986560","DOIUrl":null,"url":null,"abstract":"On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. In this study, we design a Deep Reinforcement Learning (DRL) method to solve the issue of ramp merges in uncertain scenarios and modify the structure of the Twin Delayed Deep Deterministic policy gradient algorithm (TD3), using Long Short-Term Memory (LSTM) to select an action based on temporal information. The proposed method is applied in the on-ramp merge and verified in the Simulation of Urban Mobility (SUMO). Results show that the proposed method performs significantly better generalization in uncertain traffic scenarios.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous On-ramp Merge Strategy Using Deep Reinforcement Learning in Uncertain Highway Environment\",\"authors\":\"Sifan Wu, Daxin Tian, Jianshan Zhou, Xuting Duan, Zhengguo Sheng, Dezong Zhao\",\"doi\":\"10.1109/ICUS55513.2022.9986560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. In this study, we design a Deep Reinforcement Learning (DRL) method to solve the issue of ramp merges in uncertain scenarios and modify the structure of the Twin Delayed Deep Deterministic policy gradient algorithm (TD3), using Long Short-Term Memory (LSTM) to select an action based on temporal information. The proposed method is applied in the on-ramp merge and verified in the Simulation of Urban Mobility (SUMO). Results show that the proposed method performs significantly better generalization in uncertain traffic scenarios.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"381 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9986560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

入口匝道合并是自动驾驶中一个复杂的交通场景。由于驾驶环境的不确定性,大多数基于规则的模型无法解决这一问题。在这项研究中,我们设计了一种深度强化学习(DRL)方法来解决不确定场景下的斜坡合并问题,并修改了双延迟深度确定性策略梯度算法(TD3)的结构,使用长短期记忆(LSTM)来选择基于时间信息的动作。将该方法应用于匝道入路合流中,并在城市交通仿真(SUMO)中得到验证。结果表明,该方法在不确定交通场景下具有较好的泛化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous On-ramp Merge Strategy Using Deep Reinforcement Learning in Uncertain Highway Environment
On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. In this study, we design a Deep Reinforcement Learning (DRL) method to solve the issue of ramp merges in uncertain scenarios and modify the structure of the Twin Delayed Deep Deterministic policy gradient algorithm (TD3), using Long Short-Term Memory (LSTM) to select an action based on temporal information. The proposed method is applied in the on-ramp merge and verified in the Simulation of Urban Mobility (SUMO). Results show that the proposed method performs significantly better generalization in uncertain traffic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信