分布式存储并行对称非负矩阵分解

Srinivas Eswar, Koby Hayashi, Grey Ballard, R. Kannan, R. Vuduc, Haesun Park
{"title":"分布式存储并行对称非负矩阵分解","authors":"Srinivas Eswar, Koby Hayashi, Grey Ballard, R. Kannan, R. Vuduc, Haesun Park","doi":"10.1109/SC41405.2020.00078","DOIUrl":null,"url":null,"abstract":"We develop the first distributed-memory parallel implementation of Symmetric Nonnegative Matrix Factorization (SymNMF), a key data analytics kernel for clustering and dimensionality reduction. Our implementation includes two different algorithms for SymNMF, which give comparable results in terms of time and accuracy. The first algorithm is a parallelization of an existing sequential approach that uses solvers for non symmetric NMF. The second algorithm is a novel approach based on the Gauss-Newton method. It exploits second-order information without incurring large computational and memory costs. We evaluate the scalability of our algorithms on the Summit system at Oak Ridge National Laboratory, scaling up to 128 nodes (4,096 cores) with 70% efficiency. Additionally, we demonstrate our software on an image segmentation task.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Distributed-Memory Parallel Symmetric Nonnegative Matrix Factorization\",\"authors\":\"Srinivas Eswar, Koby Hayashi, Grey Ballard, R. Kannan, R. Vuduc, Haesun Park\",\"doi\":\"10.1109/SC41405.2020.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the first distributed-memory parallel implementation of Symmetric Nonnegative Matrix Factorization (SymNMF), a key data analytics kernel for clustering and dimensionality reduction. Our implementation includes two different algorithms for SymNMF, which give comparable results in terms of time and accuracy. The first algorithm is a parallelization of an existing sequential approach that uses solvers for non symmetric NMF. The second algorithm is a novel approach based on the Gauss-Newton method. It exploits second-order information without incurring large computational and memory costs. We evaluate the scalability of our algorithms on the Summit system at Oak Ridge National Laboratory, scaling up to 128 nodes (4,096 cores) with 70% efficiency. Additionally, we demonstrate our software on an image segmentation task.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们开发了对称非负矩阵分解(SymNMF)的第一个分布式内存并行实现,SymNMF是聚类和降维的关键数据分析内核。我们的实现包括两种不同的SymNMF算法,它们在时间和准确性方面提供了可比较的结果。第一种算法是现有顺序方法的并行化,该方法使用非对称NMF的求解器。第二种算法是基于高斯-牛顿方法的一种新方法。它利用二阶信息,而不会产生大量的计算和内存成本。我们在橡树岭国家实验室的Summit系统上评估了我们算法的可扩展性,扩展到128个节点(4,096个核心),效率为70%。此外,我们在图像分割任务上演示了我们的软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed-Memory Parallel Symmetric Nonnegative Matrix Factorization
We develop the first distributed-memory parallel implementation of Symmetric Nonnegative Matrix Factorization (SymNMF), a key data analytics kernel for clustering and dimensionality reduction. Our implementation includes two different algorithms for SymNMF, which give comparable results in terms of time and accuracy. The first algorithm is a parallelization of an existing sequential approach that uses solvers for non symmetric NMF. The second algorithm is a novel approach based on the Gauss-Newton method. It exploits second-order information without incurring large computational and memory costs. We evaluate the scalability of our algorithms on the Summit system at Oak Ridge National Laboratory, scaling up to 128 nodes (4,096 cores) with 70% efficiency. Additionally, we demonstrate our software on an image segmentation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信