混合关键系统中存储器的柔性软错误缓解策略

Amer Kajmakovic, K. Diwold, N. Kajtazovic, Robert Zupanc, Georg Macher
{"title":"混合关键系统中存储器的柔性软错误缓解策略","authors":"Amer Kajmakovic, K. Diwold, N. Kajtazovic, Robert Zupanc, Georg Macher","doi":"10.1109/ISSREW.2019.00108","DOIUrl":null,"url":null,"abstract":"As memories are becoming a ubiquitous and indispensable part of electronic devices across all industrial domains, the importance of their reliability and fault-tolerance increases. This especially holds for safety-critical applications, which exhibit different levels of data criticality. As a consequence, recent research aims to proactively engage environmentally induced soft errors, by developing new methods for error detection, mitigation, and data recovery in the mixed-critical memories. This article presents a flexible soft error correction strategy called Redundant Parity (RP), designed to enhance existing 1oo2 architectures. RP extends a 1oo2 system's ability of fault detection by enabling the recovery of faulty data utilizing the parity bit concept. An initial evaluation of the strategy in terms of its runtime performance and memory overhead is performed and compared with other software-based mitigation strategies. The preliminary results suggest that RP is indeed a suitable soft error mitigation strategy in existing 1oo2 fail-safe systems.","PeriodicalId":166239,"journal":{"name":"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Flexible Soft Error Mitigation Strategy for Memories in Mixed-Critical Systems\",\"authors\":\"Amer Kajmakovic, K. Diwold, N. Kajtazovic, Robert Zupanc, Georg Macher\",\"doi\":\"10.1109/ISSREW.2019.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As memories are becoming a ubiquitous and indispensable part of electronic devices across all industrial domains, the importance of their reliability and fault-tolerance increases. This especially holds for safety-critical applications, which exhibit different levels of data criticality. As a consequence, recent research aims to proactively engage environmentally induced soft errors, by developing new methods for error detection, mitigation, and data recovery in the mixed-critical memories. This article presents a flexible soft error correction strategy called Redundant Parity (RP), designed to enhance existing 1oo2 architectures. RP extends a 1oo2 system's ability of fault detection by enabling the recovery of faulty data utilizing the parity bit concept. An initial evaluation of the strategy in terms of its runtime performance and memory overhead is performed and compared with other software-based mitigation strategies. The preliminary results suggest that RP is indeed a suitable soft error mitigation strategy in existing 1oo2 fail-safe systems.\",\"PeriodicalId\":166239,\"journal\":{\"name\":\"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2019.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2019.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着存储器成为所有工业领域电子设备中无处不在和不可或缺的一部分,其可靠性和容错性的重要性也在增加。这尤其适用于安全关键型应用程序,这些应用程序表现出不同级别的数据关键性。因此,最近的研究旨在通过开发混合关键存储器中错误检测、缓解和数据恢复的新方法,主动处理环境引起的软错误。本文介绍了一种灵活的软纠错策略,称为冗余奇偶校验(RP),旨在增强现有的1002体系结构。RP通过利用奇偶校验位概念恢复故障数据,扩展了系统的故障检测能力。根据运行时性能和内存开销对该策略进行初步评估,并与其他基于软件的缓解策略进行比较。初步结果表明,RP在现有的1002故障安全系统中确实是一种合适的软错误缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Soft Error Mitigation Strategy for Memories in Mixed-Critical Systems
As memories are becoming a ubiquitous and indispensable part of electronic devices across all industrial domains, the importance of their reliability and fault-tolerance increases. This especially holds for safety-critical applications, which exhibit different levels of data criticality. As a consequence, recent research aims to proactively engage environmentally induced soft errors, by developing new methods for error detection, mitigation, and data recovery in the mixed-critical memories. This article presents a flexible soft error correction strategy called Redundant Parity (RP), designed to enhance existing 1oo2 architectures. RP extends a 1oo2 system's ability of fault detection by enabling the recovery of faulty data utilizing the parity bit concept. An initial evaluation of the strategy in terms of its runtime performance and memory overhead is performed and compared with other software-based mitigation strategies. The preliminary results suggest that RP is indeed a suitable soft error mitigation strategy in existing 1oo2 fail-safe systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信