{"title":"基于置信度的双模型委员会序列标注学习","authors":"D. Mancev, B. Todorovic","doi":"10.1109/NEUREL.2012.6419998","DOIUrl":null,"url":null,"abstract":"The paper presents the use of a two structural model committee, where the output of the first model together with its confidence is set as the input of the second model. The confidence for the given context of predictions in the sequence is extracted from the alternative hypotheses generated from the first model. We present experiments on the shallow parsing, comparing the performance of the proposed method to the separate models.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Confidence based learning of a two-model committee for sequence labeling\",\"authors\":\"D. Mancev, B. Todorovic\",\"doi\":\"10.1109/NEUREL.2012.6419998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the use of a two structural model committee, where the output of the first model together with its confidence is set as the input of the second model. The confidence for the given context of predictions in the sequence is extracted from the alternative hypotheses generated from the first model. We present experiments on the shallow parsing, comparing the performance of the proposed method to the separate models.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Confidence based learning of a two-model committee for sequence labeling
The paper presents the use of a two structural model committee, where the output of the first model together with its confidence is set as the input of the second model. The confidence for the given context of predictions in the sequence is extracted from the alternative hypotheses generated from the first model. We present experiments on the shallow parsing, comparing the performance of the proposed method to the separate models.