Junying Yang, Xiaolan Qiu, L. Zhong, C. Ding, Lijia Huang, H. Chen
{"title":"GF-3卫星双接收信道模式下海事场景下运动目标的无二义成像","authors":"Junying Yang, Xiaolan Qiu, L. Zhong, C. Ding, Lijia Huang, H. Chen","doi":"10.1109/APSAR46974.2019.9048305","DOIUrl":null,"url":null,"abstract":"Gaofen-3 (GF-3) is the first Chinese multichannel synthetic aperture radar (SAR) sensor that can operate in the dual receive channel (DRC) mode. Different from the traditional single-channel SAR system, the multichannel SAR system can overcome the inherent limitation to achieve high-resolution and wide-swath (HRWS) at the same time. However, the key challenge it faces is false target suppression. Especially for the moving vessels on the ocean, the existence of false targets will increase false alarm probability and affect the interpretation of SAR images. In this paper, the method of integration of detection, velocity estimation, location, and imaging for moving targets in the HRWS SAR system is proposed as well as applied to get an unambiguous image. The simulation and GF-3 real data experimental results show the validity of the method.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unambiguous Imaging for Moving Targets in Maritime Scenarios with Dual Receive Channel Mode of GF-3 Satellite\",\"authors\":\"Junying Yang, Xiaolan Qiu, L. Zhong, C. Ding, Lijia Huang, H. Chen\",\"doi\":\"10.1109/APSAR46974.2019.9048305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaofen-3 (GF-3) is the first Chinese multichannel synthetic aperture radar (SAR) sensor that can operate in the dual receive channel (DRC) mode. Different from the traditional single-channel SAR system, the multichannel SAR system can overcome the inherent limitation to achieve high-resolution and wide-swath (HRWS) at the same time. However, the key challenge it faces is false target suppression. Especially for the moving vessels on the ocean, the existence of false targets will increase false alarm probability and affect the interpretation of SAR images. In this paper, the method of integration of detection, velocity estimation, location, and imaging for moving targets in the HRWS SAR system is proposed as well as applied to get an unambiguous image. The simulation and GF-3 real data experimental results show the validity of the method.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unambiguous Imaging for Moving Targets in Maritime Scenarios with Dual Receive Channel Mode of GF-3 Satellite
Gaofen-3 (GF-3) is the first Chinese multichannel synthetic aperture radar (SAR) sensor that can operate in the dual receive channel (DRC) mode. Different from the traditional single-channel SAR system, the multichannel SAR system can overcome the inherent limitation to achieve high-resolution and wide-swath (HRWS) at the same time. However, the key challenge it faces is false target suppression. Especially for the moving vessels on the ocean, the existence of false targets will increase false alarm probability and affect the interpretation of SAR images. In this paper, the method of integration of detection, velocity estimation, location, and imaging for moving targets in the HRWS SAR system is proposed as well as applied to get an unambiguous image. The simulation and GF-3 real data experimental results show the validity of the method.