节能的片上无线互连与休眠收发器

H. Mondal, Sujay Deb
{"title":"节能的片上无线互连与休眠收发器","authors":"H. Mondal, Sujay Deb","doi":"10.1109/IDT.2013.6727078","DOIUrl":null,"url":null,"abstract":"Both industry and academia has accepted Networks-on-Chip (NoCs) as the communication backbone for multi-core Systems-on-Chip (SoCs). But the traditional approach of implementing a NoC with planar metal interconnects has high latency and significant power consumption overhead. This is due to multi-hop links used in data exchange, specifically when the number of cores is significantly high. To address these problems multi-hop wire interconnects in a NoC can be replaced with high-bandwidth single-hop long-range wireless links. This opens up new opportunities for detailed investigations into the energy efficient design of wireless NoCs using suitable on-chip wireless transceivers. Wireless transceivers with power gating can significantly improve the energy efficiency of the interconnection network. In this paper we have implemented and evaluated sleep transistor based power-gated transceiver for low power on-chip wireless interconnects. This approach improved power saving for wireless communication up to 70% compared to existing wireless NoC. The transceiver consumes 36.8771 mA current while on and less than 9 nA while in sleep mode from 1 V power supply. The delay associated with this wireless transceiver is less than 10 ps.","PeriodicalId":446826,"journal":{"name":"2013 8th IEEE Design and Test Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Energy efficient on-chip wireless interconnects with sleepy transceivers\",\"authors\":\"H. Mondal, Sujay Deb\",\"doi\":\"10.1109/IDT.2013.6727078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both industry and academia has accepted Networks-on-Chip (NoCs) as the communication backbone for multi-core Systems-on-Chip (SoCs). But the traditional approach of implementing a NoC with planar metal interconnects has high latency and significant power consumption overhead. This is due to multi-hop links used in data exchange, specifically when the number of cores is significantly high. To address these problems multi-hop wire interconnects in a NoC can be replaced with high-bandwidth single-hop long-range wireless links. This opens up new opportunities for detailed investigations into the energy efficient design of wireless NoCs using suitable on-chip wireless transceivers. Wireless transceivers with power gating can significantly improve the energy efficiency of the interconnection network. In this paper we have implemented and evaluated sleep transistor based power-gated transceiver for low power on-chip wireless interconnects. This approach improved power saving for wireless communication up to 70% compared to existing wireless NoC. The transceiver consumes 36.8771 mA current while on and less than 9 nA while in sleep mode from 1 V power supply. The delay associated with this wireless transceiver is less than 10 ps.\",\"PeriodicalId\":446826,\"journal\":{\"name\":\"2013 8th IEEE Design and Test Symposium\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th IEEE Design and Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2013.6727078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th IEEE Design and Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2013.6727078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

业界和学术界都已接受片上网络(noc)作为多核片上系统(soc)的通信骨干。但采用平面金属互连实现NoC的传统方法具有高延迟和显著的功耗开销。这是由于数据交换中使用了多跳链路,特别是当核心数量非常高时。为了解决这些问题,NoC中的多跳线互连可以用高带宽单跳远程无线链路代替。这为使用合适的片上无线收发器进行无线noc节能设计的详细研究开辟了新的机会。采用功率门控的无线收发器可以显著提高互联网络的能源效率。在本文中,我们实现并评估了基于睡眠晶体管的功率门控收发器,用于低功耗片上无线互连。与现有的无线NoC相比,这种方法将无线通信的功耗节省了70%。收发器在通电时电流为36.8771 mA,在1v电源的休眠模式下电流小于9 nA。与此无线收发器相关的延迟小于10ps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient on-chip wireless interconnects with sleepy transceivers
Both industry and academia has accepted Networks-on-Chip (NoCs) as the communication backbone for multi-core Systems-on-Chip (SoCs). But the traditional approach of implementing a NoC with planar metal interconnects has high latency and significant power consumption overhead. This is due to multi-hop links used in data exchange, specifically when the number of cores is significantly high. To address these problems multi-hop wire interconnects in a NoC can be replaced with high-bandwidth single-hop long-range wireless links. This opens up new opportunities for detailed investigations into the energy efficient design of wireless NoCs using suitable on-chip wireless transceivers. Wireless transceivers with power gating can significantly improve the energy efficiency of the interconnection network. In this paper we have implemented and evaluated sleep transistor based power-gated transceiver for low power on-chip wireless interconnects. This approach improved power saving for wireless communication up to 70% compared to existing wireless NoC. The transceiver consumes 36.8771 mA current while on and less than 9 nA while in sleep mode from 1 V power supply. The delay associated with this wireless transceiver is less than 10 ps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信