算子的Banach代数中的线性Hahn-Banach型扩展算子

S. Basu, A. Singh
{"title":"算子的Banach代数中的线性Hahn-Banach型扩展算子","authors":"S. Basu, A. Singh","doi":"10.3318/pria.2019.119.02","DOIUrl":null,"url":null,"abstract":"The notion of linear Hahn-Banach extension operator was first studied in detail by Heinrich and Mankiewicz (1982). Previously, J. Lindenstrauss (1966) studied similar versions of this notion in the context of non separable reflexive Banach spaces. Subsequently, Sims and Yost (1989) proved the existence of linear Hahn-Banach extension operators via interspersing subspaces in a purely Banach space theoretic set up. In this paper, we study similar questions in the context of Banach modules and module homomorphisms, in particular, Banach algebras of operators on Banach spaces. Based on Dales, Kania, Kochanek, Kozmider and Laustsen(2013), and also Kania and Laustsen (2017), we give complete answers for reflexive Banach spaces and the non-reflexive space constructed by Kania and Laustsen from the celebrated Argyros-Haydon's space with few operators.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear Hahn-Banach type extension operators in Banach algebras of operators\",\"authors\":\"S. Basu, A. Singh\",\"doi\":\"10.3318/pria.2019.119.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of linear Hahn-Banach extension operator was first studied in detail by Heinrich and Mankiewicz (1982). Previously, J. Lindenstrauss (1966) studied similar versions of this notion in the context of non separable reflexive Banach spaces. Subsequently, Sims and Yost (1989) proved the existence of linear Hahn-Banach extension operators via interspersing subspaces in a purely Banach space theoretic set up. In this paper, we study similar questions in the context of Banach modules and module homomorphisms, in particular, Banach algebras of operators on Banach spaces. Based on Dales, Kania, Kochanek, Kozmider and Laustsen(2013), and also Kania and Laustsen (2017), we give complete answers for reflexive Banach spaces and the non-reflexive space constructed by Kania and Laustsen from the celebrated Argyros-Haydon's space with few operators.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2019.119.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2019.119.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性Hahn-Banach扩展算子的概念首先由Heinrich和Mankiewicz(1982)详细研究。此前,J. Lindenstrauss(1966)在不可分离的自反巴拿赫空间中研究了这一概念的类似版本。随后,Sims和Yost(1989)在纯巴拿赫空间理论建立中通过穿插子空间证明了线性哈恩-巴拿赫扩展算子的存在性。本文研究了Banach模和模同态中的类似问题,特别是Banach空间上算子的Banach代数。基于Dales, Kania, Kochanek, Kozmider和Laustsen(2013),以及Kania和Laustsen(2017),我们给出了自反巴拿赫空间和Kania和Laustsen从著名的Argyros-Haydon空间构建的非自反空间的完整答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Hahn-Banach type extension operators in Banach algebras of operators
The notion of linear Hahn-Banach extension operator was first studied in detail by Heinrich and Mankiewicz (1982). Previously, J. Lindenstrauss (1966) studied similar versions of this notion in the context of non separable reflexive Banach spaces. Subsequently, Sims and Yost (1989) proved the existence of linear Hahn-Banach extension operators via interspersing subspaces in a purely Banach space theoretic set up. In this paper, we study similar questions in the context of Banach modules and module homomorphisms, in particular, Banach algebras of operators on Banach spaces. Based on Dales, Kania, Kochanek, Kozmider and Laustsen(2013), and also Kania and Laustsen (2017), we give complete answers for reflexive Banach spaces and the non-reflexive space constructed by Kania and Laustsen from the celebrated Argyros-Haydon's space with few operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信