Xuanyu Shu, Jin Zhang, Sen Tian, Sheng Chen, Lingyu Chen
{"title":"结合随机边相加的卷积神经网络新模型研究","authors":"Xuanyu Shu, Jin Zhang, Sen Tian, Sheng Chen, Lingyu Chen","doi":"10.4018/ijdst.2021010105","DOIUrl":null,"url":null,"abstract":"It is always a hot and difficult point to improve the accuracy of convolutional neural network model and speed up its convergence. Based on the idea of small world network, a random edge adding algorithm is proposed to improve the performance of convolutional neural network model. This algorithm takes the convolutional neural network model as a benchmark, and randomizes backwards and cross-layer connections with probability p to form a new convolutional neural network model. The proposed idea can optimize the cross layer connectivity by changing the topological structure of convolutional neural network, and provide a new idea for the improvement of the model. The simulation results based on Fashion-MINST and cifar10 data set show that the model recognition accuracy and training convergence speed are greatly improved by random edge adding reconstructed models with aprobability p = 0.1.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on a New Convolutional Neural Network Model Combined with Random Edges Adding\",\"authors\":\"Xuanyu Shu, Jin Zhang, Sen Tian, Sheng Chen, Lingyu Chen\",\"doi\":\"10.4018/ijdst.2021010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is always a hot and difficult point to improve the accuracy of convolutional neural network model and speed up its convergence. Based on the idea of small world network, a random edge adding algorithm is proposed to improve the performance of convolutional neural network model. This algorithm takes the convolutional neural network model as a benchmark, and randomizes backwards and cross-layer connections with probability p to form a new convolutional neural network model. The proposed idea can optimize the cross layer connectivity by changing the topological structure of convolutional neural network, and provide a new idea for the improvement of the model. The simulation results based on Fashion-MINST and cifar10 data set show that the model recognition accuracy and training convergence speed are greatly improved by random edge adding reconstructed models with aprobability p = 0.1.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdst.2021010105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.2021010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on a New Convolutional Neural Network Model Combined with Random Edges Adding
It is always a hot and difficult point to improve the accuracy of convolutional neural network model and speed up its convergence. Based on the idea of small world network, a random edge adding algorithm is proposed to improve the performance of convolutional neural network model. This algorithm takes the convolutional neural network model as a benchmark, and randomizes backwards and cross-layer connections with probability p to form a new convolutional neural network model. The proposed idea can optimize the cross layer connectivity by changing the topological structure of convolutional neural network, and provide a new idea for the improvement of the model. The simulation results based on Fashion-MINST and cifar10 data set show that the model recognition accuracy and training convergence speed are greatly improved by random edge adding reconstructed models with aprobability p = 0.1.