基于HMM的在线阿拉伯语手写识别方法

Hozeifa Adam Abd Alshafy, Mohamed Elhafiz Mustafa
{"title":"基于HMM的在线阿拉伯语手写识别方法","authors":"Hozeifa Adam Abd Alshafy, Mohamed Elhafiz Mustafa","doi":"10.1109/ISDA.2014.7066288","DOIUrl":null,"url":null,"abstract":"This paper presents a novel system approach for online Arabic handwriting recognition. The approach segments the word using new character boundaries detection based algorithm. Moreover it employs HMM-based classification method for the recognition. A dataset: Sudan University of Science and Technology Online Arabic Handwriting (SUSTOLAH) is used in testing the proposed approach. Promising experimental results of testing the approach with the dataset are provided.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"HMM based approach for Online Arabic Handwriting recognition\",\"authors\":\"Hozeifa Adam Abd Alshafy, Mohamed Elhafiz Mustafa\",\"doi\":\"10.1109/ISDA.2014.7066288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel system approach for online Arabic handwriting recognition. The approach segments the word using new character boundaries detection based algorithm. Moreover it employs HMM-based classification method for the recognition. A dataset: Sudan University of Science and Technology Online Arabic Handwriting (SUSTOLAH) is used in testing the proposed approach. Promising experimental results of testing the approach with the dataset are provided.\",\"PeriodicalId\":328479,\"journal\":{\"name\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2014.7066288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新的在线阿拉伯语手写识别系统方法。该方法采用新的基于字符边界检测的词分割算法。并采用基于hmm的分类方法进行识别。一个数据集:苏丹科技大学在线阿拉伯笔迹(SUSTOLAH)被用于测试所提出的方法。给出了用数据集测试该方法的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMM based approach for Online Arabic Handwriting recognition
This paper presents a novel system approach for online Arabic handwriting recognition. The approach segments the word using new character boundaries detection based algorithm. Moreover it employs HMM-based classification method for the recognition. A dataset: Sudan University of Science and Technology Online Arabic Handwriting (SUSTOLAH) is used in testing the proposed approach. Promising experimental results of testing the approach with the dataset are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信