Web服务的服务质量时间序列预测:一种基于机器学习、遗传规划的方法

Yang Syu, Yong-Yi Fanjiang, J. Kuo, Jui-Lung Su
{"title":"Web服务的服务质量时间序列预测:一种基于机器学习、遗传规划的方法","authors":"Yang Syu, Yong-Yi Fanjiang, J. Kuo, Jui-Lung Su","doi":"10.1109/CISS.2016.7460526","DOIUrl":null,"url":null,"abstract":"Today, many software systems and applications are consisted of various services on the Web (Cloud). When selecting services or performing a service operation, a critical criterion is Quality of Service (QoS). Because the actual value of some dynamic QoS attributes could vary with time, there must be an approach that can accurately forecast future QoS value. In this paper, we propose to use a machine learning technique, i.e., Genetic Programming (GP), for the problem. When performing QoS forecasting, the proposed approach employs GP to evolve out a predictor, and then uses it to obtain future QoS forecasts. To test and understand the forecasting performance (accuracy) of the proposed approach, in our experiments with a real-world QoS dataset, we compare our approach with other existing QoS forecasting methods, and then prove and discuss its outperformance.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quality of Service timeseries forecasting for Web Services: A machine learning, Genetic Programming-based approach\",\"authors\":\"Yang Syu, Yong-Yi Fanjiang, J. Kuo, Jui-Lung Su\",\"doi\":\"10.1109/CISS.2016.7460526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, many software systems and applications are consisted of various services on the Web (Cloud). When selecting services or performing a service operation, a critical criterion is Quality of Service (QoS). Because the actual value of some dynamic QoS attributes could vary with time, there must be an approach that can accurately forecast future QoS value. In this paper, we propose to use a machine learning technique, i.e., Genetic Programming (GP), for the problem. When performing QoS forecasting, the proposed approach employs GP to evolve out a predictor, and then uses it to obtain future QoS forecasts. To test and understand the forecasting performance (accuracy) of the proposed approach, in our experiments with a real-world QoS dataset, we compare our approach with other existing QoS forecasting methods, and then prove and discuss its outperformance.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

今天,许多软件系统和应用程序由Web(云)上的各种服务组成。在选择服务或执行服务操作时,一个重要的标准是服务质量(QoS)。由于某些动态QoS属性的实际值可能随时间而变化,因此必须有一种能够准确预测未来QoS值的方法。在本文中,我们建议使用机器学习技术,即遗传规划(GP)来解决这个问题。在进行QoS预测时,该方法利用GP进化出一个预测器,然后利用它来获得未来的QoS预测。为了测试和理解所提出方法的预测性能(准确性),在我们对真实QoS数据集的实验中,我们将我们的方法与其他现有的QoS预测方法进行了比较,然后证明并讨论了它的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality of Service timeseries forecasting for Web Services: A machine learning, Genetic Programming-based approach
Today, many software systems and applications are consisted of various services on the Web (Cloud). When selecting services or performing a service operation, a critical criterion is Quality of Service (QoS). Because the actual value of some dynamic QoS attributes could vary with time, there must be an approach that can accurately forecast future QoS value. In this paper, we propose to use a machine learning technique, i.e., Genetic Programming (GP), for the problem. When performing QoS forecasting, the proposed approach employs GP to evolve out a predictor, and then uses it to obtain future QoS forecasts. To test and understand the forecasting performance (accuracy) of the proposed approach, in our experiments with a real-world QoS dataset, we compare our approach with other existing QoS forecasting methods, and then prove and discuss its outperformance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信