基于Google Earth引擎的巴西中西部原生植被制图

N. Estrabis, L. Osco, A. P. Ramos, W. Gonçalves, V. Liesenberg, H. Pistori, J. M. Junior
{"title":"基于Google Earth引擎的巴西中西部原生植被制图","authors":"N. Estrabis, L. Osco, A. P. Ramos, W. Gonçalves, V. Liesenberg, H. Pistori, J. M. Junior","doi":"10.1109/LAGIRS48042.2020.9165607","DOIUrl":null,"url":null,"abstract":"Google Earth Engine (GEE) platform is an online tool, which generates fast solutions in terms of image classification and does not require high performance computers locally. We investigate several data input scenarios for mapping native-vegetation and nonnative-vegetation in the Atlantic Forest region encompassed in a Landsat scene (224/076) acquired on November 28, 2019. The data input scenarios were: I- spectral bands (blue to shortwave infrared); II- NDVI (Normalized Difference Vegetation Index); IIImNDWI (modified Normalized Difference Water Index); IV- scenarios I and II; and V- scenarios I to III. Our results showed that the use of spectral bands added NDVI and mNDWI (scenario V) provided the best performance for the native-vegetation mapping, with accuracy of 96.64% and kappa index of 0.91.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brazilian Midwest Native Vegetation Mapping Based on Google Earth Engine\",\"authors\":\"N. Estrabis, L. Osco, A. P. Ramos, W. Gonçalves, V. Liesenberg, H. Pistori, J. M. Junior\",\"doi\":\"10.1109/LAGIRS48042.2020.9165607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Google Earth Engine (GEE) platform is an online tool, which generates fast solutions in terms of image classification and does not require high performance computers locally. We investigate several data input scenarios for mapping native-vegetation and nonnative-vegetation in the Atlantic Forest region encompassed in a Landsat scene (224/076) acquired on November 28, 2019. The data input scenarios were: I- spectral bands (blue to shortwave infrared); II- NDVI (Normalized Difference Vegetation Index); IIImNDWI (modified Normalized Difference Water Index); IV- scenarios I and II; and V- scenarios I to III. Our results showed that the use of spectral bands added NDVI and mNDWI (scenario V) provided the best performance for the native-vegetation mapping, with accuracy of 96.64% and kappa index of 0.91.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Google Earth Engine (GEE)平台是一个在线工具,它可以快速生成图像分类的解决方案,并且不需要本地的高性能计算机。我们研究了2019年11月28日获取的陆地卫星场景(224/076)中大西洋森林地区原生植被和非原生植被的几种数据输入场景。数据输入场景为:I-光谱波段(蓝色至短波红外);II-归一化植被指数NDVI;iii .修正归一化差水指数;IV-情景I和II;V-情景一至情景三。结果表明,利用NDVI和mNDWI组合的光谱波段(场景V)对原生植被制图效果最好,精度为96.64%,kappa指数为0.91。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brazilian Midwest Native Vegetation Mapping Based on Google Earth Engine
Google Earth Engine (GEE) platform is an online tool, which generates fast solutions in terms of image classification and does not require high performance computers locally. We investigate several data input scenarios for mapping native-vegetation and nonnative-vegetation in the Atlantic Forest region encompassed in a Landsat scene (224/076) acquired on November 28, 2019. The data input scenarios were: I- spectral bands (blue to shortwave infrared); II- NDVI (Normalized Difference Vegetation Index); IIImNDWI (modified Normalized Difference Water Index); IV- scenarios I and II; and V- scenarios I to III. Our results showed that the use of spectral bands added NDVI and mNDWI (scenario V) provided the best performance for the native-vegetation mapping, with accuracy of 96.64% and kappa index of 0.91.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信