Seongwon Kim, Youngwook Son, K. Lee, Jaehong Yi, Sunghyun Choi
{"title":"安静的CTS: CTS功率控制更好的空间重用在Wi-Fi","authors":"Seongwon Kim, Youngwook Son, K. Lee, Jaehong Yi, Sunghyun Choi","doi":"10.1145/3323679.3326506","DOIUrl":null,"url":null,"abstract":"This paper sheds light on the necessity for transmit power control of 802.11 clear-to-send (CTS) frame for better spatial reuse in densely deployed wireless local area networks (WLANs). We first study the effect of the interference caused by CTS frames through both experiments and numerical analysis. Based on the analysis, we raise a limited spatial reuse problem caused by RTS/CTS mechanism and establish a guideline for controlling CTS transmit power to solve the problem. Next, a standard-compliant CTS transmit power control method, namely Quiet CTS (QCTS), is proposed. Through extensive simulations and prototyping using both software-defined radio and commercial devices, we demonstrate that QCTS enhances the average network throughput by up to 50% by enabling more simultaneous data transmissions.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quiet CTS: CTS Power Control for Better Spatial Reuse in Wi-Fi\",\"authors\":\"Seongwon Kim, Youngwook Son, K. Lee, Jaehong Yi, Sunghyun Choi\",\"doi\":\"10.1145/3323679.3326506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper sheds light on the necessity for transmit power control of 802.11 clear-to-send (CTS) frame for better spatial reuse in densely deployed wireless local area networks (WLANs). We first study the effect of the interference caused by CTS frames through both experiments and numerical analysis. Based on the analysis, we raise a limited spatial reuse problem caused by RTS/CTS mechanism and establish a guideline for controlling CTS transmit power to solve the problem. Next, a standard-compliant CTS transmit power control method, namely Quiet CTS (QCTS), is proposed. Through extensive simulations and prototyping using both software-defined radio and commercial devices, we demonstrate that QCTS enhances the average network throughput by up to 50% by enabling more simultaneous data transmissions.\",\"PeriodicalId\":205641,\"journal\":{\"name\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323679.3326506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quiet CTS: CTS Power Control for Better Spatial Reuse in Wi-Fi
This paper sheds light on the necessity for transmit power control of 802.11 clear-to-send (CTS) frame for better spatial reuse in densely deployed wireless local area networks (WLANs). We first study the effect of the interference caused by CTS frames through both experiments and numerical analysis. Based on the analysis, we raise a limited spatial reuse problem caused by RTS/CTS mechanism and establish a guideline for controlling CTS transmit power to solve the problem. Next, a standard-compliant CTS transmit power control method, namely Quiet CTS (QCTS), is proposed. Through extensive simulations and prototyping using both software-defined radio and commercial devices, we demonstrate that QCTS enhances the average network throughput by up to 50% by enabling more simultaneous data transmissions.