自适应控制的神经模糊结构

L. Pavel, M. Chelaru
{"title":"自适应控制的神经模糊结构","authors":"L. Pavel, M. Chelaru","doi":"10.1109/FUZZY.1992.258715","DOIUrl":null,"url":null,"abstract":"The authors address the tracking control of linear and nonlinear systems with unknown dynamics. A self-tuning neural fuzzy adaptive control architecture, based on M. Sugeno's model for fuzzy systems (1985) and on the use of feedforward neural networks is proposed. The control loop is described. Then, the adaptive neural version of the Sugeno model for fuzzy inference systems, inserted in this loop, is presented. The algorithm was simulated and tested for discrete-time linear and nonlinear systems.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Neural fuzzy architecture for adaptive control\",\"authors\":\"L. Pavel, M. Chelaru\",\"doi\":\"10.1109/FUZZY.1992.258715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors address the tracking control of linear and nonlinear systems with unknown dynamics. A self-tuning neural fuzzy adaptive control architecture, based on M. Sugeno's model for fuzzy systems (1985) and on the use of feedforward neural networks is proposed. The control loop is described. Then, the adaptive neural version of the Sugeno model for fuzzy inference systems, inserted in this loop, is presented. The algorithm was simulated and tested for discrete-time linear and nonlinear systems.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了具有未知动力学特性的线性和非线性系统的跟踪控制问题。基于M. Sugeno的模糊系统模型(1985)和前馈神经网络的使用,提出了一种自调谐神经模糊自适应控制体系结构。对控制回路进行了描述。然后,将Sugeno模糊推理系统模型的自适应神经版本插入到该回路中。对该算法进行了离散时间线性和非线性系统的仿真和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural fuzzy architecture for adaptive control
The authors address the tracking control of linear and nonlinear systems with unknown dynamics. A self-tuning neural fuzzy adaptive control architecture, based on M. Sugeno's model for fuzzy systems (1985) and on the use of feedforward neural networks is proposed. The control loop is described. Then, the adaptive neural version of the Sugeno model for fuzzy inference systems, inserted in this loop, is presented. The algorithm was simulated and tested for discrete-time linear and nonlinear systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信