基于CNN-LSTM的AUV三维轨迹预测

Juan Li, Wenbo Li
{"title":"基于CNN-LSTM的AUV三维轨迹预测","authors":"Juan Li, Wenbo Li","doi":"10.1109/ICMA54519.2022.9856366","DOIUrl":null,"url":null,"abstract":"When multiple AUVs perform formation tasks underwater, there is a delay in the follower receiving the leader’s information, so that the follower cannot accurately follow the leader. In response to this problem, this paper designs a short-term trajectory prediction scheme of CNN-LSTM. First, the data is processed, and then the CNN-LSTM neural network trajectory prediction model is constructed by mining the time series relationship in the historical data of the leader. Finally, the accuracy and robustness of the prediction of the CNN-LSTM model are verified by comparing with the prediction results of other models.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AUV 3D Trajectory Prediction Based on CNN-LSTM\",\"authors\":\"Juan Li, Wenbo Li\",\"doi\":\"10.1109/ICMA54519.2022.9856366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When multiple AUVs perform formation tasks underwater, there is a delay in the follower receiving the leader’s information, so that the follower cannot accurately follow the leader. In response to this problem, this paper designs a short-term trajectory prediction scheme of CNN-LSTM. First, the data is processed, and then the CNN-LSTM neural network trajectory prediction model is constructed by mining the time series relationship in the historical data of the leader. Finally, the accuracy and robustness of the prediction of the CNN-LSTM model are verified by comparing with the prediction results of other models.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当多个auv在水下执行编队任务时,follower接收leader的信息会有一定的延迟,导致follower无法准确跟随leader。针对这一问题,本文设计了一种CNN-LSTM的短期轨迹预测方案。首先对数据进行处理,然后通过挖掘领队历史数据中的时间序列关系,构建CNN-LSTM神经网络轨迹预测模型。最后,通过与其他模型的预测结果对比,验证了CNN-LSTM模型预测的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AUV 3D Trajectory Prediction Based on CNN-LSTM
When multiple AUVs perform formation tasks underwater, there is a delay in the follower receiving the leader’s information, so that the follower cannot accurately follow the leader. In response to this problem, this paper designs a short-term trajectory prediction scheme of CNN-LSTM. First, the data is processed, and then the CNN-LSTM neural network trajectory prediction model is constructed by mining the time series relationship in the historical data of the leader. Finally, the accuracy and robustness of the prediction of the CNN-LSTM model are verified by comparing with the prediction results of other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信