从调查数据估计通货膨胀预期的测量误差:蒙特卡罗模拟的评估

A. Terai
{"title":"从调查数据估计通货膨胀预期的测量误差:蒙特卡罗模拟的评估","authors":"A. Terai","doi":"10.1787/JBCMA-2009-5KS9V45BGGD5","DOIUrl":null,"url":null,"abstract":"This paper discusses the measurement error of conversion methods used to convert survey data to a quantitative index, especially the Carlson and Parkin (1975) method. When we want to summarise economic conditions using a numerical value, we often have to depend on survey data and convert them to a quantitative index. However, because survey research restricts responses into specific classifications and respondent’s response density may not be uniform, survey data surely include a specific error. In addition, because the distribution assumed in the Carlson–Parkin method may not fit the respondent’s distribution, this may also produce measurement error. This paper computes the measurement error of the Carlson and Parkin method in order to clarify its properties by Monte Carlo simulation. First, this paper finds that the \"balance approach\" contains significant error. Second, the error is large when true inflation expectations are large. Third, the error can be decreased by increasing the number of respondents. Fourth, changes in the response classification do not bring about dramatic changes compared with an increase in the number of respondents.","PeriodicalId":313514,"journal":{"name":"Oecd Journal: Journal of Business Cycle Measurement and Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Measurement error in estimating inflation expectations from survey data: An evaluation by Monte Carlo simulations\",\"authors\":\"A. Terai\",\"doi\":\"10.1787/JBCMA-2009-5KS9V45BGGD5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the measurement error of conversion methods used to convert survey data to a quantitative index, especially the Carlson and Parkin (1975) method. When we want to summarise economic conditions using a numerical value, we often have to depend on survey data and convert them to a quantitative index. However, because survey research restricts responses into specific classifications and respondent’s response density may not be uniform, survey data surely include a specific error. In addition, because the distribution assumed in the Carlson–Parkin method may not fit the respondent’s distribution, this may also produce measurement error. This paper computes the measurement error of the Carlson and Parkin method in order to clarify its properties by Monte Carlo simulation. First, this paper finds that the \\\"balance approach\\\" contains significant error. Second, the error is large when true inflation expectations are large. Third, the error can be decreased by increasing the number of respondents. Fourth, changes in the response classification do not bring about dramatic changes compared with an increase in the number of respondents.\",\"PeriodicalId\":313514,\"journal\":{\"name\":\"Oecd Journal: Journal of Business Cycle Measurement and Analysis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oecd Journal: Journal of Business Cycle Measurement and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1787/JBCMA-2009-5KS9V45BGGD5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecd Journal: Journal of Business Cycle Measurement and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/JBCMA-2009-5KS9V45BGGD5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文讨论了将调查数据转换为定量指标的转换方法的测量误差,特别是Carlson和Parkin(1975)方法。当我们想用数值来概括经济状况时,我们常常不得不依赖调查数据,并将其转换为定量指标。然而,由于调查研究将回答限制在特定的分类中,并且被调查者的回答密度可能不均匀,因此调查数据肯定包含特定的错误。此外,由于Carlson-Parkin法中假设的分布可能与被调查者的分布不吻合,这也可能产生测量误差。本文对卡尔森-帕金方法的测量误差进行了计算,并通过蒙特卡洛模拟阐明了卡尔森-帕金方法的性质。首先,本文发现“平衡法”存在显著误差。其次,当真实通胀预期较大时,误差也较大。第三,可以通过增加调查对象的数量来减少误差。第四,与被调查者数量的增加相比,回应分类的变化不会带来剧烈的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement error in estimating inflation expectations from survey data: An evaluation by Monte Carlo simulations
This paper discusses the measurement error of conversion methods used to convert survey data to a quantitative index, especially the Carlson and Parkin (1975) method. When we want to summarise economic conditions using a numerical value, we often have to depend on survey data and convert them to a quantitative index. However, because survey research restricts responses into specific classifications and respondent’s response density may not be uniform, survey data surely include a specific error. In addition, because the distribution assumed in the Carlson–Parkin method may not fit the respondent’s distribution, this may also produce measurement error. This paper computes the measurement error of the Carlson and Parkin method in order to clarify its properties by Monte Carlo simulation. First, this paper finds that the "balance approach" contains significant error. Second, the error is large when true inflation expectations are large. Third, the error can be decreased by increasing the number of respondents. Fourth, changes in the response classification do not bring about dramatic changes compared with an increase in the number of respondents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信