基于角度指纹的5G网络侧用户定位研究

Jiayi Meng, Abhigyan Sharma, Tuyen X. Tran, Bharath Balasubramanian, Gueyoung Jung, M. Hiltunen, Y. C. Hu
{"title":"基于角度指纹的5G网络侧用户定位研究","authors":"Jiayi Meng, Abhigyan Sharma, Tuyen X. Tran, Bharath Balasubramanian, Gueyoung Jung, M. Hiltunen, Y. C. Hu","doi":"10.1109/LANMAN49260.2020.9153232","DOIUrl":null,"url":null,"abstract":"This paper explores network-side cellular user localization using fingerprints created from the angle measurements enabled by 5G. Our key idea is a binning-based fingerprinting technique that leverages multipath propagation to create fingerprint vectors based on angles of arrival of signals along multiple paths at each user. In network simulations that recreate urban environments with 3D building geometry and base station locations for a major city, our binning-based fingerprinting for 5G achieves significantly lower localization errors with a single base station than signal strength-based fingerprinting for LTE.","PeriodicalId":431494,"journal":{"name":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Study of Network-Side 5G User Localization Using Angle-Based Fingerprints\",\"authors\":\"Jiayi Meng, Abhigyan Sharma, Tuyen X. Tran, Bharath Balasubramanian, Gueyoung Jung, M. Hiltunen, Y. C. Hu\",\"doi\":\"10.1109/LANMAN49260.2020.9153232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores network-side cellular user localization using fingerprints created from the angle measurements enabled by 5G. Our key idea is a binning-based fingerprinting technique that leverages multipath propagation to create fingerprint vectors based on angles of arrival of signals along multiple paths at each user. In network simulations that recreate urban environments with 3D building geometry and base station locations for a major city, our binning-based fingerprinting for 5G achieves significantly lower localization errors with a single base station than signal strength-based fingerprinting for LTE.\",\"PeriodicalId\":431494,\"journal\":{\"name\":\"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LANMAN49260.2020.9153232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN49260.2020.9153232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文利用5G支持的角度测量产生的指纹探索了网络端蜂窝用户定位。我们的关键思想是基于分类的指纹识别技术,该技术利用多路径传播来创建指纹矢量,该矢量基于沿多个路径到达每个用户的信号的角度。在用主要城市的3D建筑几何形状和基站位置重建城市环境的网络模拟中,我们基于分类的5G指纹识别在单个基站上实现的定位误差明显低于基于信号强度的LTE指纹识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Network-Side 5G User Localization Using Angle-Based Fingerprints
This paper explores network-side cellular user localization using fingerprints created from the angle measurements enabled by 5G. Our key idea is a binning-based fingerprinting technique that leverages multipath propagation to create fingerprint vectors based on angles of arrival of signals along multiple paths at each user. In network simulations that recreate urban environments with 3D building geometry and base station locations for a major city, our binning-based fingerprinting for 5G achieves significantly lower localization errors with a single base station than signal strength-based fingerprinting for LTE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信