MazeExplorer:用于评估强化学习泛化的可定制3D基准

Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin
{"title":"MazeExplorer:用于评估强化学习泛化的可定制3D基准","authors":"Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin","doi":"10.1109/CIG.2019.8848048","DOIUrl":null,"url":null,"abstract":"This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.","PeriodicalId":177208,"journal":{"name":"2019 IEEE Conference on Games (CoG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning\",\"authors\":\"Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin\",\"doi\":\"10.1109/CIG.2019.8848048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.\",\"PeriodicalId\":177208,\"journal\":{\"name\":\"2019 IEEE Conference on Games (CoG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Games (CoG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2019.8848048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2019.8848048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一个可定制的3D基准,用于评估基于3D第一人称游戏《毁灭战士》和开源环境VizDoom的强化学习代理的通用性。作为一个示例用例,我们展示了在键集导航任务的训练过程中不同的领域随机化技术可以帮助提高智能体在看不见的评估地图上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning
This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信