Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin
{"title":"MazeExplorer:用于评估强化学习泛化的可定制3D基准","authors":"Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin","doi":"10.1109/CIG.2019.8848048","DOIUrl":null,"url":null,"abstract":"This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.","PeriodicalId":177208,"journal":{"name":"2019 IEEE Conference on Games (CoG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning\",\"authors\":\"Luke Harries, Sebastian Lee, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin\",\"doi\":\"10.1109/CIG.2019.8848048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.\",\"PeriodicalId\":177208,\"journal\":{\"name\":\"2019 IEEE Conference on Games (CoG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Games (CoG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2019.8848048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2019.8848048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MazeExplorer: A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning
This paper presents a customisable 3D benchmark for assessing generalisability of reinforcement learning agents based on the 3D first-person game Doom and open source environment VizDoom. As a sample use-case we show that different domain randomisation techniques during training in a key-collection navigation task can help to improve agent performance on unseen evaluation maps.