利用多表达谱对齐聚类微阵列时间序列数据的新方法

N. Subhani, L. Rueda, A. Ngom, C. J. Burden
{"title":"利用多表达谱对齐聚类微阵列时间序列数据的新方法","authors":"N. Subhani, L. Rueda, A. Ngom, C. J. Burden","doi":"10.1109/CIBCB.2010.5510385","DOIUrl":null,"url":null,"abstract":"An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New approaches to clustering microarray time-series data using multiple expression profile alignment\",\"authors\":\"N. Subhani, L. Rueda, A. Ngom, C. J. Burden\",\"doi\":\"10.1109/CIBCB.2010.5510385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

功能基因组研究中的一个重要过程是聚类微阵列时间序列数据,其中具有相似表达谱的基因有望在功能上相关。最近介绍了通过分段线性轮廓的两两对齐聚类微阵列时间序列数据的方法。在本文中,我们提出了一种基于自然三次样条的多剖面对齐和基因表达谱的分段线性表示的聚类方法。我们将这些多重对齐方法与k-means结合起来。我们在一个众所周知的预聚类酿酒酵母基因表达谱数据集和3315个铜绿假单胞菌表达谱数据集上运行了我们的方法。我们评估了所得聚类的有效性,并应用c-最邻近分类器来评估我们的方法的性能,在酿酒酵母数据上的准确率分别为89.51%和86.12%,在铜绿假单胞菌数据上的三次样条和分段线性的准确率分别为90.90%和93.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New approaches to clustering microarray time-series data using multiple expression profile alignment
An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信