{"title":"利用多表达谱对齐聚类微阵列时间序列数据的新方法","authors":"N. Subhani, L. Rueda, A. Ngom, C. J. Burden","doi":"10.1109/CIBCB.2010.5510385","DOIUrl":null,"url":null,"abstract":"An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New approaches to clustering microarray time-series data using multiple expression profile alignment\",\"authors\":\"N. Subhani, L. Rueda, A. Ngom, C. J. Burden\",\"doi\":\"10.1109/CIBCB.2010.5510385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New approaches to clustering microarray time-series data using multiple expression profile alignment
An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related. Clustering microarray time-series data via pairwise alignment of piecewise linear profiles has been recently introduced. In this paper, we propose a clustering approach based on a multiple profile alignment of natural cubic spline and piecewise linear representations of gene expression profiles. We combine these multiple alignment approaches with k-means. We ran our methods on a well-known data set of pre-clustered Saccharomyces cerevisiae gene expression profiles and a data set of 3315 Pseudomonas aeruginosa expression profiles. We assessed the validity of the resulting clusters and applied a c-nearest neighbor classifier for evaluating the performance of our approaches, obtaining accuracies of 89.51% and 86.12% respectively, on Saccharomyces cerevisiae data, and 90.90% and 93.71% accuracies for cubic spline and piecewise linear respectively on Pseudomonas aeruginosa data.