基于多层前馈神经网络的模式分类训练方案

K. Keeni, K. Nakayama, H. Shimodaira
{"title":"基于多层前馈神经网络的模式分类训练方案","authors":"K. Keeni, K. Nakayama, H. Shimodaira","doi":"10.1109/ICCIMA.1999.798548","DOIUrl":null,"url":null,"abstract":"This study highlights the subject of weight initialization in multi-layer feed-forward networks. Training data is analyzed and the notion of critical point is introduced for determining the initial weights for input to hidden layer synaptic connections. The proposed method has been applied to artificial data. Experimental results show that the proposed method takes almost half the training time required for standard backpropagation.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A training scheme for pattern classification using multi-layer feed-forward neural networks\",\"authors\":\"K. Keeni, K. Nakayama, H. Shimodaira\",\"doi\":\"10.1109/ICCIMA.1999.798548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study highlights the subject of weight initialization in multi-layer feed-forward networks. Training data is analyzed and the notion of critical point is introduced for determining the initial weights for input to hidden layer synaptic connections. The proposed method has been applied to artificial data. Experimental results show that the proposed method takes almost half the training time required for standard backpropagation.\",\"PeriodicalId\":110736,\"journal\":{\"name\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.1999.798548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文重点研究了多层前馈网络中权重初始化问题。对训练数据进行分析,引入临界点的概念确定隐层突触连接输入的初始权值。该方法已应用于人工数据。实验结果表明,该方法的训练时间几乎是标准反向传播训练时间的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A training scheme for pattern classification using multi-layer feed-forward neural networks
This study highlights the subject of weight initialization in multi-layer feed-forward networks. Training data is analyzed and the notion of critical point is introduced for determining the initial weights for input to hidden layer synaptic connections. The proposed method has been applied to artificial data. Experimental results show that the proposed method takes almost half the training time required for standard backpropagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信