{"title":"量化增量开发实践及其与拖延症的关系","authors":"Ayaan M. Kazerouni, S. Edwards, C. Shaffer","doi":"10.1145/3105726.3106180","DOIUrl":null,"url":null,"abstract":"We present quantitative analyses performed on character-level program edit and execution data, collected in a junior-level data structures and algorithms course. The goal of this research is to determine whether proposed measures of student behaviors such as incremental development and procrastination during their program development process are significantly related to the correctness of final solutions, the time when work is completed, or the total time spent working on a solution. A dataset of 6.3 million fine-grained events collected from each student's local Eclipse environment is analyzed, including the edits made and events such as running the program or executing software tests. We examine four primary metrics proposed as part of previous work, and also examine variants and refinements that may be more effective. We quantify behaviors such as working early and often, frequency of program and test executions, and incremental writing of software tests. Projects where the author had an earlier mean time of edits were more likely to submit their projects earlier and to earn higher scores for correctness. Similarly earlier median time of edits to software tests was also associated with higher correctness scores. No significant relationships were found with incremental test writing or incremental checking of work using either interactive program launches or running of software tests, contrary to expectations. A preliminary prediction model with 69% accuracy suggests that the underlying metrics may support early prediction of student success on projects. Such metrics also can be used to give targeted feedback to help students improve their development practices.","PeriodicalId":267640,"journal":{"name":"Proceedings of the 2017 ACM Conference on International Computing Education Research","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Quantifying Incremental Development Practices and Their Relationship to Procrastination\",\"authors\":\"Ayaan M. Kazerouni, S. Edwards, C. Shaffer\",\"doi\":\"10.1145/3105726.3106180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present quantitative analyses performed on character-level program edit and execution data, collected in a junior-level data structures and algorithms course. The goal of this research is to determine whether proposed measures of student behaviors such as incremental development and procrastination during their program development process are significantly related to the correctness of final solutions, the time when work is completed, or the total time spent working on a solution. A dataset of 6.3 million fine-grained events collected from each student's local Eclipse environment is analyzed, including the edits made and events such as running the program or executing software tests. We examine four primary metrics proposed as part of previous work, and also examine variants and refinements that may be more effective. We quantify behaviors such as working early and often, frequency of program and test executions, and incremental writing of software tests. Projects where the author had an earlier mean time of edits were more likely to submit their projects earlier and to earn higher scores for correctness. Similarly earlier median time of edits to software tests was also associated with higher correctness scores. No significant relationships were found with incremental test writing or incremental checking of work using either interactive program launches or running of software tests, contrary to expectations. A preliminary prediction model with 69% accuracy suggests that the underlying metrics may support early prediction of student success on projects. Such metrics also can be used to give targeted feedback to help students improve their development practices.\",\"PeriodicalId\":267640,\"journal\":{\"name\":\"Proceedings of the 2017 ACM Conference on International Computing Education Research\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM Conference on International Computing Education Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3105726.3106180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Conference on International Computing Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3105726.3106180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying Incremental Development Practices and Their Relationship to Procrastination
We present quantitative analyses performed on character-level program edit and execution data, collected in a junior-level data structures and algorithms course. The goal of this research is to determine whether proposed measures of student behaviors such as incremental development and procrastination during their program development process are significantly related to the correctness of final solutions, the time when work is completed, or the total time spent working on a solution. A dataset of 6.3 million fine-grained events collected from each student's local Eclipse environment is analyzed, including the edits made and events such as running the program or executing software tests. We examine four primary metrics proposed as part of previous work, and also examine variants and refinements that may be more effective. We quantify behaviors such as working early and often, frequency of program and test executions, and incremental writing of software tests. Projects where the author had an earlier mean time of edits were more likely to submit their projects earlier and to earn higher scores for correctness. Similarly earlier median time of edits to software tests was also associated with higher correctness scores. No significant relationships were found with incremental test writing or incremental checking of work using either interactive program launches or running of software tests, contrary to expectations. A preliminary prediction model with 69% accuracy suggests that the underlying metrics may support early prediction of student success on projects. Such metrics also can be used to give targeted feedback to help students improve their development practices.