动态峰值神经网络中无标度图的出现

Filip Pigkniewski
{"title":"动态峰值神经网络中无标度图的出现","authors":"Filip Pigkniewski","doi":"10.1109/IJCNN.2007.4371052","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the presence of a scale-free property in spiking neural networks. Although as argued in the papers by Amaral et al. (2000) and Koch and Laurent (1999), some biological neural networks do not reveal scale-free nature on the level of single neurons, we believe, based on previous research (Piekniewski and Schreiber, 2007) and numerical simulations presented in this article, that such structures should emerge on the level of neuronal groups as a consequence of their rich dynamics and memory properties. The network we analyze is built upon the spiking model introduced by Eugene Izhikevich (2003; 2006). It is formed as a set of randomly constructed neuronal groups (each group to some extent resembles the original model), connected with Gaussian weights. Such a system exhibits rich dynamics, with chattering, bursting and other forms of neuronal activity, as well as global synchronization episodes. We analyze similarities of spike trains of neurons coming from different groups, and build a weighted graph which approximates the similarity of activities (synchronization) of pairs of units. The output graph reveals a scale-free structure giving support to our claim.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Emergence of Scale-free Graphs in Dynamical Spiking Neural Networks\",\"authors\":\"Filip Pigkniewski\",\"doi\":\"10.1109/IJCNN.2007.4371052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the presence of a scale-free property in spiking neural networks. Although as argued in the papers by Amaral et al. (2000) and Koch and Laurent (1999), some biological neural networks do not reveal scale-free nature on the level of single neurons, we believe, based on previous research (Piekniewski and Schreiber, 2007) and numerical simulations presented in this article, that such structures should emerge on the level of neuronal groups as a consequence of their rich dynamics and memory properties. The network we analyze is built upon the spiking model introduced by Eugene Izhikevich (2003; 2006). It is formed as a set of randomly constructed neuronal groups (each group to some extent resembles the original model), connected with Gaussian weights. Such a system exhibits rich dynamics, with chattering, bursting and other forms of neuronal activity, as well as global synchronization episodes. We analyze similarities of spike trains of neurons coming from different groups, and build a weighted graph which approximates the similarity of activities (synchronization) of pairs of units. The output graph reveals a scale-free structure giving support to our claim.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文讨论了尖峰神经网络中无标度性的存在性。尽管在Amaral等人(2000)和Koch和Laurent(1999)的论文中指出,一些生物神经网络在单个神经元水平上并没有显示出无标度性质,但我们认为,基于先前的研究(Piekniewski和Schreiber, 2007)和本文中提出的数值模拟,这种结构应该出现在神经元群水平上,因为它们具有丰富的动态和记忆特性。我们分析的网络是建立在由Eugene Izhikevich (2003;2006)。它是由一组随机构建的神经元组(每组在某种程度上与原始模型相似)组成的,并与高斯权重相连。这样的系统表现出丰富的动态,包括颤振、爆裂和其他形式的神经元活动,以及全局同步事件。我们分析了来自不同组的神经元尖峰序列的相似度,并建立了一个加权图来近似单元对的活动(同步)相似度。输出图显示了一个支持我们主张的无标度结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of Scale-free Graphs in Dynamical Spiking Neural Networks
In this paper we discuss the presence of a scale-free property in spiking neural networks. Although as argued in the papers by Amaral et al. (2000) and Koch and Laurent (1999), some biological neural networks do not reveal scale-free nature on the level of single neurons, we believe, based on previous research (Piekniewski and Schreiber, 2007) and numerical simulations presented in this article, that such structures should emerge on the level of neuronal groups as a consequence of their rich dynamics and memory properties. The network we analyze is built upon the spiking model introduced by Eugene Izhikevich (2003; 2006). It is formed as a set of randomly constructed neuronal groups (each group to some extent resembles the original model), connected with Gaussian weights. Such a system exhibits rich dynamics, with chattering, bursting and other forms of neuronal activity, as well as global synchronization episodes. We analyze similarities of spike trains of neurons coming from different groups, and build a weighted graph which approximates the similarity of activities (synchronization) of pairs of units. The output graph reveals a scale-free structure giving support to our claim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信