近似核苷酸序列匹配的agrep算法的快速CUDA实现

Hongjian Li, Bing Ni, M. Wong, K. Leung
{"title":"近似核苷酸序列匹配的agrep算法的快速CUDA实现","authors":"Hongjian Li, Bing Ni, M. Wong, K. Leung","doi":"10.1109/SASP.2011.5941082","DOIUrl":null,"url":null,"abstract":"The availability of huge amounts of nucleotide sequences catalyzes the development of fast algorithms for approximate DNA and RNA string matching. However, most existing online algorithms can only handle small scale problems. When querying large genomes, their performance becomes unacceptable. Offline algorithms such as Bowtie and BWA require building indexes, and their memory requirement is high. We have developed a fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching by exploiting the huge computational power of modern GPU hardware. Our CUDA program is capable of searching large genomes for patterns of length up to 64 with edit distance up to 9. For example, it is able to search the entire human genome (3.10 Gbp in 24 chromosomes) for patterns of lengths of 30 and 60 with edit distances of 3 and 6 within 371 and 1,188 milliseconds respectively on one NVIDIA GeForce GTX285 graphics card, achieving 70-fold and 36-fold speedups over multithreaded QuadCore CPU counterpart. Our program employs online approach and does not require building indexes of any kind, it thus can be applied in real time. Using two-bits-for-one-character binary representation, its memory requirement is merely one fourth of the original genome size. Therefore it is possible to load multiple genomes simultaneously. The x86 and x64 executables for Linux and Windows, C++ source code, documentations, user manual, and an AJAX MVC website for online real time searching are available at http://agrep.cse.cuhk.edu.hk. Users can also send emails to CUDAagrepGmail.com to queue up for a job.","PeriodicalId":375788,"journal":{"name":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching\",\"authors\":\"Hongjian Li, Bing Ni, M. Wong, K. Leung\",\"doi\":\"10.1109/SASP.2011.5941082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of huge amounts of nucleotide sequences catalyzes the development of fast algorithms for approximate DNA and RNA string matching. However, most existing online algorithms can only handle small scale problems. When querying large genomes, their performance becomes unacceptable. Offline algorithms such as Bowtie and BWA require building indexes, and their memory requirement is high. We have developed a fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching by exploiting the huge computational power of modern GPU hardware. Our CUDA program is capable of searching large genomes for patterns of length up to 64 with edit distance up to 9. For example, it is able to search the entire human genome (3.10 Gbp in 24 chromosomes) for patterns of lengths of 30 and 60 with edit distances of 3 and 6 within 371 and 1,188 milliseconds respectively on one NVIDIA GeForce GTX285 graphics card, achieving 70-fold and 36-fold speedups over multithreaded QuadCore CPU counterpart. Our program employs online approach and does not require building indexes of any kind, it thus can be applied in real time. Using two-bits-for-one-character binary representation, its memory requirement is merely one fourth of the original genome size. Therefore it is possible to load multiple genomes simultaneously. The x86 and x64 executables for Linux and Windows, C++ source code, documentations, user manual, and an AJAX MVC website for online real time searching are available at http://agrep.cse.cuhk.edu.hk. Users can also send emails to CUDAagrepGmail.com to queue up for a job.\",\"PeriodicalId\":375788,\"journal\":{\"name\":\"2011 IEEE 9th Symposium on Application Specific Processors (SASP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th Symposium on Application Specific Processors (SASP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASP.2011.5941082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2011.5941082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

大量核苷酸序列的可用性催化了近似DNA和RNA字符串匹配的快速算法的发展。然而,大多数现有的在线算法只能处理小规模问题。当查询大型基因组时,它们的性能变得不可接受。Bowtie和BWA等离线算法需要建立索引,并且它们对内存的要求很高。通过利用现代GPU硬件的巨大计算能力,我们开发了一种用于近似核苷酸序列匹配的agrep算法的快速CUDA实现。我们的CUDA程序能够搜索长度达64的大基因组模式,编辑距离达9。例如,它能够在一块NVIDIA GeForce GTX285显卡上搜索整个人类基因组(24条染色体中有3.10 Gbp),分别在371毫秒和1188毫秒内搜索长度为30和60的模式,编辑距离为3和6,比多线程四核CPU实现70倍和36倍的速度。我们的程序采用在线方式,不需要建立任何类型的索引,因此可以实时应用。使用2位1字符的二进制表示,其内存需求仅为原始基因组大小的四分之一。因此,同时加载多个基因组是可能的。用于Linux和Windows的x86和x64可执行文件、c++源代码、文档、用户手册以及用于在线实时搜索的AJAX MVC网站可在http://agrep.cse.cuhk.edu.hk上获得。用户还可以向CUDAagrepGmail.com发送电子邮件,排队等待工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching
The availability of huge amounts of nucleotide sequences catalyzes the development of fast algorithms for approximate DNA and RNA string matching. However, most existing online algorithms can only handle small scale problems. When querying large genomes, their performance becomes unacceptable. Offline algorithms such as Bowtie and BWA require building indexes, and their memory requirement is high. We have developed a fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching by exploiting the huge computational power of modern GPU hardware. Our CUDA program is capable of searching large genomes for patterns of length up to 64 with edit distance up to 9. For example, it is able to search the entire human genome (3.10 Gbp in 24 chromosomes) for patterns of lengths of 30 and 60 with edit distances of 3 and 6 within 371 and 1,188 milliseconds respectively on one NVIDIA GeForce GTX285 graphics card, achieving 70-fold and 36-fold speedups over multithreaded QuadCore CPU counterpart. Our program employs online approach and does not require building indexes of any kind, it thus can be applied in real time. Using two-bits-for-one-character binary representation, its memory requirement is merely one fourth of the original genome size. Therefore it is possible to load multiple genomes simultaneously. The x86 and x64 executables for Linux and Windows, C++ source code, documentations, user manual, and an AJAX MVC website for online real time searching are available at http://agrep.cse.cuhk.edu.hk. Users can also send emails to CUDAagrepGmail.com to queue up for a job.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信