基于代理的Amazon EC2 Spot实例弹性雾计算架构

J. P. A. Neto, D. Pianto, C. Ralha
{"title":"基于代理的Amazon EC2 Spot实例弹性雾计算架构","authors":"J. P. A. Neto, D. Pianto, C. Ralha","doi":"10.1109/BRACIS.2018.00069","DOIUrl":null,"url":null,"abstract":"Cloud computing providers have started offering their idle resources as transient servers. Spot instances are transient servers offered by Amazon, whose prices dynamically change over time based on supply and demand. By using appropriate strategies and fault-tolerant mechanisms, users can effectively use spot instances to run applications at a lower price. This paper presents a resilient agent-based fog computing architecture that combines machine learning and a statistical model to predict time to instance revocation and helps to refine fault tolerance parameters and reduce total execution time. The experiments demonstrate that our model predicts with high levels of accuracy reaching 94% success rate what indicates the model is effective under realistic working conditions.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Agent-Based Fog Computing Architecture for Resilience on Amazon EC2 Spot Instances\",\"authors\":\"J. P. A. Neto, D. Pianto, C. Ralha\",\"doi\":\"10.1109/BRACIS.2018.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing providers have started offering their idle resources as transient servers. Spot instances are transient servers offered by Amazon, whose prices dynamically change over time based on supply and demand. By using appropriate strategies and fault-tolerant mechanisms, users can effectively use spot instances to run applications at a lower price. This paper presents a resilient agent-based fog computing architecture that combines machine learning and a statistical model to predict time to instance revocation and helps to refine fault tolerance parameters and reduce total execution time. The experiments demonstrate that our model predicts with high levels of accuracy reaching 94% success rate what indicates the model is effective under realistic working conditions.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

云计算提供商已经开始提供空闲资源作为临时服务器。现货实例是Amazon提供的临时服务器,其价格会根据供需动态变化。通过使用适当的策略和容错机制,用户可以有效地使用现货实例以较低的价格运行应用程序。本文提出了一种弹性的基于agent的雾计算架构,该架构结合了机器学习和统计模型来预测实例撤销的时间,并有助于改进容错参数并减少总执行时间。实验表明,该模型预测准确率较高,准确率达94%,表明该模型在实际工况下是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Agent-Based Fog Computing Architecture for Resilience on Amazon EC2 Spot Instances
Cloud computing providers have started offering their idle resources as transient servers. Spot instances are transient servers offered by Amazon, whose prices dynamically change over time based on supply and demand. By using appropriate strategies and fault-tolerant mechanisms, users can effectively use spot instances to run applications at a lower price. This paper presents a resilient agent-based fog computing architecture that combines machine learning and a statistical model to predict time to instance revocation and helps to refine fault tolerance parameters and reduce total execution time. The experiments demonstrate that our model predicts with high levels of accuracy reaching 94% success rate what indicates the model is effective under realistic working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信