水下被动方位目标跟踪的正交滤波器

R. Radhakrishnan, Abhinoy Kumar Singh, S. Bhaumik, Nutan Kumar Tomar
{"title":"水下被动方位目标跟踪的正交滤波器","authors":"R. Radhakrishnan, Abhinoy Kumar Singh, S. Bhaumik, Nutan Kumar Tomar","doi":"10.1109/SSPD.2015.7288519","DOIUrl":null,"url":null,"abstract":"A typical underwater passive bearings-only target tracking problem is solved using nonlinear filters namely cubature Kalman filter (CKF), Gauss-Hermite filter (GHF) and sparse-grid Gauss-Hermite filter (SGHF). The performance of the filters is compared in terms of estimation accuracy, track-loss count and computational time. Theoretical Cramer-Rao lower bound (CRLB) is used to determine the maximum achievable performance and to compare the error bounds of various filters used.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Quadrature Filters for Underwater Passive Bearings-Only Target Tracking\",\"authors\":\"R. Radhakrishnan, Abhinoy Kumar Singh, S. Bhaumik, Nutan Kumar Tomar\",\"doi\":\"10.1109/SSPD.2015.7288519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A typical underwater passive bearings-only target tracking problem is solved using nonlinear filters namely cubature Kalman filter (CKF), Gauss-Hermite filter (GHF) and sparse-grid Gauss-Hermite filter (SGHF). The performance of the filters is compared in terms of estimation accuracy, track-loss count and computational time. Theoretical Cramer-Rao lower bound (CRLB) is used to determine the maximum achievable performance and to compare the error bounds of various filters used.\",\"PeriodicalId\":212668,\"journal\":{\"name\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2015.7288519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2015.7288519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

利用三维卡尔曼滤波(CKF)、高斯-埃尔米特滤波(GHF)和稀疏网格高斯-埃尔米特滤波(SGHF)三种非线性滤波器解决了典型的水下无源目标跟踪问题。从估计精度、迹损计数和计算时间三个方面比较了滤波器的性能。理论Cramer-Rao下界(CRLB)用于确定可实现的最大性能并比较所使用的各种滤波器的误差范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadrature Filters for Underwater Passive Bearings-Only Target Tracking
A typical underwater passive bearings-only target tracking problem is solved using nonlinear filters namely cubature Kalman filter (CKF), Gauss-Hermite filter (GHF) and sparse-grid Gauss-Hermite filter (SGHF). The performance of the filters is compared in terms of estimation accuracy, track-loss count and computational time. Theoretical Cramer-Rao lower bound (CRLB) is used to determine the maximum achievable performance and to compare the error bounds of various filters used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信