基于注意力深度学习和局部离群因子的DDOS攻击检测

Abdelkader Dairi, Belkacem Khaldi, F. Harrou, Ying Sun
{"title":"基于注意力深度学习和局部离群因子的DDOS攻击检测","authors":"Abdelkader Dairi, Belkacem Khaldi, F. Harrou, Ying Sun","doi":"10.1109/FMEC57183.2022.10062705","DOIUrl":null,"url":null,"abstract":"One of the most significant security concerns confronting network technology is the detection of distributed denial of service (DDOS). This paper introduces a semi-supervised data-driven approach to the detection of DDOS attacks. The proposed method employs normal events data without labeling to train the detection model. Specifically, this approach introduces an improved autoencoder (AE) model by incorporating a Gated Recurrent Unit (GRU) based on the attention mechanism (AM) at the encoder and decoder sides of the AE model. GRU enhances the AE's ability to learn temporal dependencies, and the AM enables the selection of relevant features. For DDOS attacks detection, the local outlier factor (LOF) anomaly detection algorithm is applied to extracted features from the improved AE model. The performance of the proposed approach has been verified using DDOS publically available datasets.","PeriodicalId":129184,"journal":{"name":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDOS attacks detection based on attention-deep learning and local outlier factor\",\"authors\":\"Abdelkader Dairi, Belkacem Khaldi, F. Harrou, Ying Sun\",\"doi\":\"10.1109/FMEC57183.2022.10062705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most significant security concerns confronting network technology is the detection of distributed denial of service (DDOS). This paper introduces a semi-supervised data-driven approach to the detection of DDOS attacks. The proposed method employs normal events data without labeling to train the detection model. Specifically, this approach introduces an improved autoencoder (AE) model by incorporating a Gated Recurrent Unit (GRU) based on the attention mechanism (AM) at the encoder and decoder sides of the AE model. GRU enhances the AE's ability to learn temporal dependencies, and the AM enables the selection of relevant features. For DDOS attacks detection, the local outlier factor (LOF) anomaly detection algorithm is applied to extracted features from the improved AE model. The performance of the proposed approach has been verified using DDOS publically available datasets.\",\"PeriodicalId\":129184,\"journal\":{\"name\":\"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMEC57183.2022.10062705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC57183.2022.10062705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络技术面临的最重要的安全问题之一是分布式拒绝服务(DDOS)的检测。本文介绍了一种半监督数据驱动的DDOS攻击检测方法。该方法采用无标记的正常事件数据来训练检测模型。具体来说,该方法引入了一种改进的自动编码器(AE)模型,在AE模型的编码器和解码器侧结合了一个基于注意机制(AM)的门控循环单元(GRU)。GRU增强了AE学习时间依赖性的能力,AM实现了相关特征的选择。针对DDOS攻击检测,采用局部离群因子(LOF)异常检测算法从改进的AE模型中提取特征。利用DDOS公开可用的数据集验证了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDOS attacks detection based on attention-deep learning and local outlier factor
One of the most significant security concerns confronting network technology is the detection of distributed denial of service (DDOS). This paper introduces a semi-supervised data-driven approach to the detection of DDOS attacks. The proposed method employs normal events data without labeling to train the detection model. Specifically, this approach introduces an improved autoencoder (AE) model by incorporating a Gated Recurrent Unit (GRU) based on the attention mechanism (AM) at the encoder and decoder sides of the AE model. GRU enhances the AE's ability to learn temporal dependencies, and the AM enables the selection of relevant features. For DDOS attacks detection, the local outlier factor (LOF) anomaly detection algorithm is applied to extracted features from the improved AE model. The performance of the proposed approach has been verified using DDOS publically available datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信