联合视频和稀疏三维变换域协同滤波的飞行时间深度图

T. Hach, Tamara Seybold, H. Böttcher
{"title":"联合视频和稀疏三维变换域协同滤波的飞行时间深度图","authors":"T. Hach, Tamara Seybold, H. Böttcher","doi":"10.1109/ISM.2015.112","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Today's depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. All high-level RGB video renderings based on the accompanied depth map's 3D geometry like augmented reality applications will have severe temporal flickering artifacts. We approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. Our denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, we extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. We show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that our method is superior to state-of-the-art methods. Our method delivers improved flicker-free depth video streams for future applications, which are especially sensitive to temporal noise and arbitrary depth artifacts.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint Video and Sparse 3D Transform-Domain Collaborative Filtering for Time-of-Flight Depth Maps\",\"authors\":\"T. Hach, Tamara Seybold, H. Böttcher\",\"doi\":\"10.1109/ISM.2015.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Today's depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. All high-level RGB video renderings based on the accompanied depth map's 3D geometry like augmented reality applications will have severe temporal flickering artifacts. We approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. Our denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, we extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. We show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that our method is superior to state-of-the-art methods. Our method delivers improved flicker-free depth video streams for future applications, which are especially sensitive to temporal noise and arbitrary depth artifacts.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的RGBD相机系统深度视频去噪策略。当今由最先进的飞行时间传感器获得的深度图序列受到高时间噪声的影响。所有基于随附深度图的3D几何图形(如增强现实应用程序)的高级RGB视频渲染都会有严重的时间闪烁伪影。我们通过将深度图上尺度与时间去噪步骤解耦来解决这一限制。因此,在包括不相关的逐像素噪声分布的原始像素上处理去噪。我们的去噪方法采用联合稀疏三维变换域协同滤波。其中,我们提取RGB纹理信息,为连续收缩操作提供更稳定和准确的高度稀疏的3D深度块表示。我们在真实的RGBD相机数据和公开的合成数据集上展示了我们的方法的有效性。评价表明我们的方法优于最先进的方法。我们的方法为未来的应用提供了改进的无闪烁深度视频流,这些视频流对时间噪声和任意深度伪影特别敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Video and Sparse 3D Transform-Domain Collaborative Filtering for Time-of-Flight Depth Maps
This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Today's depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. All high-level RGB video renderings based on the accompanied depth map's 3D geometry like augmented reality applications will have severe temporal flickering artifacts. We approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. Our denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, we extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. We show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that our method is superior to state-of-the-art methods. Our method delivers improved flicker-free depth video streams for future applications, which are especially sensitive to temporal noise and arbitrary depth artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信