人工神经网络估算有周围障碍物的住宅环境的自然光

Raphaela Walger da Fonseca, P. Mariano, F. O. R. Pereira
{"title":"人工神经网络估算有周围障碍物的住宅环境的自然光","authors":"Raphaela Walger da Fonseca, P. Mariano, F. O. R. Pereira","doi":"10.18607/es20231215233","DOIUrl":null,"url":null,"abstract":"Muitos países adotam instrumentos regulatórios para a melhoria do desempenho das edificações e a qualidade luminosa é frequentemente abordada em seus escopos. Métodos simplificados facilitam a aplicação de tais instrumentos e a inteligência artificial tem se mostrado útil para esse fim. Assim, o objetivo deste trabalho é a propor um metamodelo, utilizando-se redes neurais artificiais, para verificar o desempenho luminoso de edificações residenciais, considerando o impacto do entorno construído no contexto da revisão da norma brasileira “ABNT NBR 15.575-1 Edificações habitacionais — Desempenho”. Para isto, adotou-se a base de dados simulados para a proposta de revisão da norma, contendo 36.000 casos que relacionam a influência de obstruções externas à edificação ao seu desempenho quanto à suficiência e uniformidade da luz natural. Assim, metamodelos de redes neurais artificias Perceptron Multicamadas foram treinados com dados das cidades de Curitiba, Brasília e Belém. A arquitetura das redes consistiu em 3 camadas, a de entrada, uma oculta e a de saída. Testaram-se aspectos de sua arquitetura e do agrupamento dos parâmetros de entrada, as variáveis da edificação, e de saída, ALNE200lx,50% e ALNE60lx,50%. O seu desempenho global foi considerado aceitável, com erro percentual médio inferior a 10%, sendo necessário o seu refinamento para a redução de discrepantes. Concluiu-se que as RNA podem ser uma alternativa como método simplificado para aplicação na norma, apontando-se como opções de refinamento do metamodelo a variação do algoritmo de aprendizagem, da partição dos conjuntos de treinamento e teste, e a ampliação do seu escopo com outras proporções e transmissões visíveis.","PeriodicalId":190205,"journal":{"name":"E&S Engineering and Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redes neurais artificiais para estimar a iluminação natural em ambientes residenciais com obstrução do entorno\",\"authors\":\"Raphaela Walger da Fonseca, P. Mariano, F. O. R. Pereira\",\"doi\":\"10.18607/es20231215233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Muitos países adotam instrumentos regulatórios para a melhoria do desempenho das edificações e a qualidade luminosa é frequentemente abordada em seus escopos. Métodos simplificados facilitam a aplicação de tais instrumentos e a inteligência artificial tem se mostrado útil para esse fim. Assim, o objetivo deste trabalho é a propor um metamodelo, utilizando-se redes neurais artificiais, para verificar o desempenho luminoso de edificações residenciais, considerando o impacto do entorno construído no contexto da revisão da norma brasileira “ABNT NBR 15.575-1 Edificações habitacionais — Desempenho”. Para isto, adotou-se a base de dados simulados para a proposta de revisão da norma, contendo 36.000 casos que relacionam a influência de obstruções externas à edificação ao seu desempenho quanto à suficiência e uniformidade da luz natural. Assim, metamodelos de redes neurais artificias Perceptron Multicamadas foram treinados com dados das cidades de Curitiba, Brasília e Belém. A arquitetura das redes consistiu em 3 camadas, a de entrada, uma oculta e a de saída. Testaram-se aspectos de sua arquitetura e do agrupamento dos parâmetros de entrada, as variáveis da edificação, e de saída, ALNE200lx,50% e ALNE60lx,50%. O seu desempenho global foi considerado aceitável, com erro percentual médio inferior a 10%, sendo necessário o seu refinamento para a redução de discrepantes. Concluiu-se que as RNA podem ser uma alternativa como método simplificado para aplicação na norma, apontando-se como opções de refinamento do metamodelo a variação do algoritmo de aprendizagem, da partição dos conjuntos de treinamento e teste, e a ampliação do seu escopo com outras proporções e transmissões visíveis.\",\"PeriodicalId\":190205,\"journal\":{\"name\":\"E&S Engineering and Science\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E&S Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18607/es20231215233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E&S Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18607/es20231215233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多国家采用监管工具来改善建筑性能,光质量经常在其范围内得到解决。简化的方法有助于这些仪器的应用,人工智能已被证明在这方面是有用的。因此,这项工作的目的是提出一个元模型,使用人工神经网络,以验证住宅建筑的照明性能,考虑建筑环境的影响,在修订巴西标准“ABNT NBR 15.575-1住宅建筑-性能”的背景下。为此,该标准的拟议修订采用了模拟数据库,其中包含36000个案例,涉及建筑外部障碍物对其在自然光充足和均匀性方面的性能的影响。因此,利用库里蒂巴、brasilia和belem等城市的数据对多层感知器人工神经网络元模型进行了训练。网络架构由输入层、隐藏层和输出层三层组成。测试了其建筑的各个方面和输入参数的分组,建筑变量,和输出,ALNE200lx,50%和ALNE60lx,50%。它的整体性能被认为是可以接受的,平均百分比误差小于10%,需要改进以减少差异。结论是,人工神经网络可以作为一种简化的方法应用于标准,指出作为改进元模型的选项,学习算法的变化,训练和测试集的划分,以及使用其他比例和可见传输扩展其范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redes neurais artificiais para estimar a iluminação natural em ambientes residenciais com obstrução do entorno
Muitos países adotam instrumentos regulatórios para a melhoria do desempenho das edificações e a qualidade luminosa é frequentemente abordada em seus escopos. Métodos simplificados facilitam a aplicação de tais instrumentos e a inteligência artificial tem se mostrado útil para esse fim. Assim, o objetivo deste trabalho é a propor um metamodelo, utilizando-se redes neurais artificiais, para verificar o desempenho luminoso de edificações residenciais, considerando o impacto do entorno construído no contexto da revisão da norma brasileira “ABNT NBR 15.575-1 Edificações habitacionais — Desempenho”. Para isto, adotou-se a base de dados simulados para a proposta de revisão da norma, contendo 36.000 casos que relacionam a influência de obstruções externas à edificação ao seu desempenho quanto à suficiência e uniformidade da luz natural. Assim, metamodelos de redes neurais artificias Perceptron Multicamadas foram treinados com dados das cidades de Curitiba, Brasília e Belém. A arquitetura das redes consistiu em 3 camadas, a de entrada, uma oculta e a de saída. Testaram-se aspectos de sua arquitetura e do agrupamento dos parâmetros de entrada, as variáveis da edificação, e de saída, ALNE200lx,50% e ALNE60lx,50%. O seu desempenho global foi considerado aceitável, com erro percentual médio inferior a 10%, sendo necessário o seu refinamento para a redução de discrepantes. Concluiu-se que as RNA podem ser uma alternativa como método simplificado para aplicação na norma, apontando-se como opções de refinamento do metamodelo a variação do algoritmo de aprendizagem, da partição dos conjuntos de treinamento e teste, e a ampliação do seu escopo com outras proporções e transmissões visíveis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信