K-Means算法:基于信令数据的欺诈检测

Xing Min, Rongheng Lin
{"title":"K-Means算法:基于信令数据的欺诈检测","authors":"Xing Min, Rongheng Lin","doi":"10.1109/SERVICES.2018.00024","DOIUrl":null,"url":null,"abstract":"At present, the crime of telecom fraud, with advanced communications and Internet technologies, is growing rapidly and causing huge losses every year. The traditional fraud detection methods are less flexible. In this paper, we used the signaling data to train a clustering model, which can discover the hidden user characteristics of fraud phones. The paper puts forward the extraction method of behavior characteristics, reduce the dimension of features with principal component analysis and select the appropriate clustering parameters through grid search, then present the K-Means-based behavior identification system, which can help to distinguish the frauds and identify the fraud phone numbers. Finally, the feasibility of this model is verified by the actual sample dataset.","PeriodicalId":130225,"journal":{"name":"2018 IEEE World Congress on Services (SERVICES)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"K-Means Algorithm: Fraud Detection Based on Signaling Data\",\"authors\":\"Xing Min, Rongheng Lin\",\"doi\":\"10.1109/SERVICES.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the crime of telecom fraud, with advanced communications and Internet technologies, is growing rapidly and causing huge losses every year. The traditional fraud detection methods are less flexible. In this paper, we used the signaling data to train a clustering model, which can discover the hidden user characteristics of fraud phones. The paper puts forward the extraction method of behavior characteristics, reduce the dimension of features with principal component analysis and select the appropriate clustering parameters through grid search, then present the K-Means-based behavior identification system, which can help to distinguish the frauds and identify the fraud phone numbers. Finally, the feasibility of this model is verified by the actual sample dataset.\",\"PeriodicalId\":130225,\"journal\":{\"name\":\"2018 IEEE World Congress on Services (SERVICES)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE World Congress on Services (SERVICES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE World Congress on Services (SERVICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

目前,随着通信和互联网技术的发展,电信诈骗犯罪增长迅速,每年造成的损失巨大。传统的欺诈检测方法缺乏灵活性。在本文中,我们利用信令数据训练了一个聚类模型,该模型可以发现欺诈电话隐藏的用户特征。本文提出了行为特征的提取方法,利用主成分分析对特征进行降维,并通过网格搜索选择合适的聚类参数,提出了基于k - means的行为识别系统,该系统可以帮助识别欺诈行为,识别欺诈电话号码。最后,通过实际样本数据集验证了该模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-Means Algorithm: Fraud Detection Based on Signaling Data
At present, the crime of telecom fraud, with advanced communications and Internet technologies, is growing rapidly and causing huge losses every year. The traditional fraud detection methods are less flexible. In this paper, we used the signaling data to train a clustering model, which can discover the hidden user characteristics of fraud phones. The paper puts forward the extraction method of behavior characteristics, reduce the dimension of features with principal component analysis and select the appropriate clustering parameters through grid search, then present the K-Means-based behavior identification system, which can help to distinguish the frauds and identify the fraud phone numbers. Finally, the feasibility of this model is verified by the actual sample dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信