Vinh Hoang Son Le, C. A. Nour, E. Boutillon, C. Douillard
{"title":"高速率穿刺卷积码的双格结构","authors":"Vinh Hoang Son Le, C. A. Nour, E. Boutillon, C. Douillard","doi":"10.1109/PIMRCW.2019.8880816","DOIUrl":null,"url":null,"abstract":"Puncturing a low-rate convolutional code to generate a high-rate code has some drawback in terms of hardware implementation. In fact, a Maximum A-Posteriori (MAP) decoder based on the original trellis will then have a decoding throughput close to the decoding throughput of the mother non-punctured code. A solution to overcome this limitation is to perform MAP decoding on the dual trellis of a high-rate equivalent convolutional code. In the literature, dual trellis construction is only reported for specific punctured codes with rate $k/(k+1)$. In this paper, we propose a multi-step method to construct the equivalent dual code defined by the corresponding dual trellis for any punctured code. First, the equivalent nonsystematic generator matrix of the high-rate punctured code is derived. Then, the reciprocal parity-check matrix for the construction of the dual trellis is deduced. As a result, we show that the dual-MAP algorithm applied on the newly constructed dual trellis yields the same performance as the original MAP algorithm while allowing the decoder to achieve a higher throughput. When applied to turbo codes, this method enables highly efficient implementations of high-throughput high-rate turbo decoders.","PeriodicalId":158659,"journal":{"name":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dual Trellis Construction for High-Rate Punctured Convolutional Codes\",\"authors\":\"Vinh Hoang Son Le, C. A. Nour, E. Boutillon, C. Douillard\",\"doi\":\"10.1109/PIMRCW.2019.8880816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Puncturing a low-rate convolutional code to generate a high-rate code has some drawback in terms of hardware implementation. In fact, a Maximum A-Posteriori (MAP) decoder based on the original trellis will then have a decoding throughput close to the decoding throughput of the mother non-punctured code. A solution to overcome this limitation is to perform MAP decoding on the dual trellis of a high-rate equivalent convolutional code. In the literature, dual trellis construction is only reported for specific punctured codes with rate $k/(k+1)$. In this paper, we propose a multi-step method to construct the equivalent dual code defined by the corresponding dual trellis for any punctured code. First, the equivalent nonsystematic generator matrix of the high-rate punctured code is derived. Then, the reciprocal parity-check matrix for the construction of the dual trellis is deduced. As a result, we show that the dual-MAP algorithm applied on the newly constructed dual trellis yields the same performance as the original MAP algorithm while allowing the decoder to achieve a higher throughput. When applied to turbo codes, this method enables highly efficient implementations of high-throughput high-rate turbo decoders.\",\"PeriodicalId\":158659,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRCW.2019.8880816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRCW.2019.8880816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Trellis Construction for High-Rate Punctured Convolutional Codes
Puncturing a low-rate convolutional code to generate a high-rate code has some drawback in terms of hardware implementation. In fact, a Maximum A-Posteriori (MAP) decoder based on the original trellis will then have a decoding throughput close to the decoding throughput of the mother non-punctured code. A solution to overcome this limitation is to perform MAP decoding on the dual trellis of a high-rate equivalent convolutional code. In the literature, dual trellis construction is only reported for specific punctured codes with rate $k/(k+1)$. In this paper, we propose a multi-step method to construct the equivalent dual code defined by the corresponding dual trellis for any punctured code. First, the equivalent nonsystematic generator matrix of the high-rate punctured code is derived. Then, the reciprocal parity-check matrix for the construction of the dual trellis is deduced. As a result, we show that the dual-MAP algorithm applied on the newly constructed dual trellis yields the same performance as the original MAP algorithm while allowing the decoder to achieve a higher throughput. When applied to turbo codes, this method enables highly efficient implementations of high-throughput high-rate turbo decoders.