查找网络中的关键区域

S. Trajanovski, F. Kuipers, P. Mieghem
{"title":"查找网络中的关键区域","authors":"S. Trajanovski, F. Kuipers, P. Mieghem","doi":"10.1109/INFCOM.2013.6567167","DOIUrl":null,"url":null,"abstract":"It is important that our vital networks (e.g., infrastructures) are robust to more than single-link failures. Failures might for instance affect a part of the network that resides in a certain geographical region. In this paper, considering networks embedded in a two-dimensional plane, we study the problem of finding a critical region - that is, a part of the network that can be enclosed by a given elementary figure (a circle, ellipse, rectangle, square, or equilateral triangle) with a predetermined size - whose removal would lead to the highest network disruption. We determine that there is a polynomial number of non-trivial positions for such a figure that need to be considered and, subsequently, we propose a polynomial-time algorithm for the problem. Simulations on realistic networks illustrate that different figures with equal area result in different critical regions in a network.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Finding critical regions in a network\",\"authors\":\"S. Trajanovski, F. Kuipers, P. Mieghem\",\"doi\":\"10.1109/INFCOM.2013.6567167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important that our vital networks (e.g., infrastructures) are robust to more than single-link failures. Failures might for instance affect a part of the network that resides in a certain geographical region. In this paper, considering networks embedded in a two-dimensional plane, we study the problem of finding a critical region - that is, a part of the network that can be enclosed by a given elementary figure (a circle, ellipse, rectangle, square, or equilateral triangle) with a predetermined size - whose removal would lead to the highest network disruption. We determine that there is a polynomial number of non-trivial positions for such a figure that need to be considered and, subsequently, we propose a polynomial-time algorithm for the problem. Simulations on realistic networks illustrate that different figures with equal area result in different critical regions in a network.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2013.6567167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6567167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

重要的是,我们的关键网络(例如,基础设施)对于单链路故障以外的故障是健壮的。例如,故障可能会影响位于某个地理区域的网络的一部分。在本文中,考虑嵌入在二维平面上的网络,我们研究了寻找一个临界区域的问题,即网络的一部分,它可以被给定的初等图形(圆、椭圆、矩形、正方形或等边三角形)包围,具有预定的大小,它的移除将导致最高的网络中断。我们确定有一个多项式数目的非平凡的位置对于这样的图形需要考虑,随后,我们提出了一个多项式时间算法的问题。对实际网络的仿真表明,不同的等面积图形会导致网络中不同的关键区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding critical regions in a network
It is important that our vital networks (e.g., infrastructures) are robust to more than single-link failures. Failures might for instance affect a part of the network that resides in a certain geographical region. In this paper, considering networks embedded in a two-dimensional plane, we study the problem of finding a critical region - that is, a part of the network that can be enclosed by a given elementary figure (a circle, ellipse, rectangle, square, or equilateral triangle) with a predetermined size - whose removal would lead to the highest network disruption. We determine that there is a polynomial number of non-trivial positions for such a figure that need to be considered and, subsequently, we propose a polynomial-time algorithm for the problem. Simulations on realistic networks illustrate that different figures with equal area result in different critical regions in a network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信