基于VAE和指针生成器网络的释义生成

Lohith Ravuru, Hyungtak Choi, M. SiddarthK., Hojung Lee, Inchul Hwang
{"title":"基于VAE和指针生成器网络的释义生成","authors":"Lohith Ravuru, Hyungtak Choi, M. SiddarthK., Hojung Lee, Inchul Hwang","doi":"10.1109/ASRU46091.2019.9003874","DOIUrl":null,"url":null,"abstract":"Paraphrase generation is a challenging task that involves expressing the meaning of a sentence using synonyms or different phrases, either to achieve variations or a certain stylistic response. Most previous sequence-to-sequence (Seq2Seq) models focus on either generating variations or preserving the content. We mainly address the issue of preserving the content in a sentence while generating diverse paraphrases. In this paper, we propose a novel approach for paraphrase generation using variational autoencoder (VAE) and Pointer Generator Network (PGN). The proposed model uses a copy mechanism to control the content transfer, a VAE to introduce variations and a training technique to restrict the gradient flow for efficient learning. Our evaluations on QUORA and MS COCO datasets show that our model outperforms the state-of-the-art approaches and the generated paraphrases are highly diverse as well as consistent with their original meaning.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Paraphrase Generation Based on VAE and Pointer-Generator Networks\",\"authors\":\"Lohith Ravuru, Hyungtak Choi, M. SiddarthK., Hojung Lee, Inchul Hwang\",\"doi\":\"10.1109/ASRU46091.2019.9003874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paraphrase generation is a challenging task that involves expressing the meaning of a sentence using synonyms or different phrases, either to achieve variations or a certain stylistic response. Most previous sequence-to-sequence (Seq2Seq) models focus on either generating variations or preserving the content. We mainly address the issue of preserving the content in a sentence while generating diverse paraphrases. In this paper, we propose a novel approach for paraphrase generation using variational autoencoder (VAE) and Pointer Generator Network (PGN). The proposed model uses a copy mechanism to control the content transfer, a VAE to introduce variations and a training technique to restrict the gradient flow for efficient learning. Our evaluations on QUORA and MS COCO datasets show that our model outperforms the state-of-the-art approaches and the generated paraphrases are highly diverse as well as consistent with their original meaning.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

释义生成是一项具有挑战性的任务,它涉及到使用同义词或不同的短语来表达句子的意思,要么达到变化,要么达到一定的风格反应。大多数先前的序列到序列(Seq2Seq)模型要么关注于生成变异,要么关注于保留内容。我们主要解决的问题是保留一个句子的内容,同时产生不同的释义。本文提出了一种利用变分自编码器(VAE)和指针生成器网络(PGN)生成释义的新方法。该模型使用复制机制来控制内容迁移,使用VAE来引入变化,使用训练技术来限制梯度流以实现高效学习。我们对QUORA和MS COCO数据集的评估表明,我们的模型优于最先进的方法,生成的释义高度多样化,并且与原始含义一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paraphrase Generation Based on VAE and Pointer-Generator Networks
Paraphrase generation is a challenging task that involves expressing the meaning of a sentence using synonyms or different phrases, either to achieve variations or a certain stylistic response. Most previous sequence-to-sequence (Seq2Seq) models focus on either generating variations or preserving the content. We mainly address the issue of preserving the content in a sentence while generating diverse paraphrases. In this paper, we propose a novel approach for paraphrase generation using variational autoencoder (VAE) and Pointer Generator Network (PGN). The proposed model uses a copy mechanism to control the content transfer, a VAE to introduce variations and a training technique to restrict the gradient flow for efficient learning. Our evaluations on QUORA and MS COCO datasets show that our model outperforms the state-of-the-art approaches and the generated paraphrases are highly diverse as well as consistent with their original meaning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信