嵌入式实时车辆分类的单传感器声学特征提取

Andreas Starzacher, B. Rinner
{"title":"嵌入式实时车辆分类的单传感器声学特征提取","authors":"Andreas Starzacher, B. Rinner","doi":"10.1109/PDCAT.2009.18","DOIUrl":null,"url":null,"abstract":"Vehicle classification is an important task for various traffic monitoring applications. This paper investigates the capabilities of acoustic feature generation for vehicle classification. Six temporal and spectral features are extracted from the audio recordings. Six different classification algorithms are compared using the extracted features. We focus on a single sensor setting to keep the computational effort low and evaluate its classification accuracy and real-time performance. The experimental evaluation is performed on our embedded platform using recorded data of about 150 vehicles. The results are applied in our ongoing research on fusing video, laser and acoustic data for real-time traffic monitoring.","PeriodicalId":312929,"journal":{"name":"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Single Sensor Acoustic Feature Extraction for Embedded Realtime Vehicle Classification\",\"authors\":\"Andreas Starzacher, B. Rinner\",\"doi\":\"10.1109/PDCAT.2009.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle classification is an important task for various traffic monitoring applications. This paper investigates the capabilities of acoustic feature generation for vehicle classification. Six temporal and spectral features are extracted from the audio recordings. Six different classification algorithms are compared using the extracted features. We focus on a single sensor setting to keep the computational effort low and evaluate its classification accuracy and real-time performance. The experimental evaluation is performed on our embedded platform using recorded data of about 150 vehicles. The results are applied in our ongoing research on fusing video, laser and acoustic data for real-time traffic monitoring.\",\"PeriodicalId\":312929,\"journal\":{\"name\":\"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2009.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2009.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

车辆分类是各种交通监控应用中的一项重要任务。本文研究了声学特征生成用于车辆分类的能力。从音频记录中提取了六个时间和频谱特征。利用提取的特征对六种不同的分类算法进行了比较。我们将重点放在单个传感器设置上,以保持较低的计算量,并评估其分类精度和实时性能。在我们的嵌入式平台上进行了实验评估,使用了大约150辆汽车的记录数据。研究结果应用于我们正在进行的融合视频、激光和声学数据的实时交通监控研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Sensor Acoustic Feature Extraction for Embedded Realtime Vehicle Classification
Vehicle classification is an important task for various traffic monitoring applications. This paper investigates the capabilities of acoustic feature generation for vehicle classification. Six temporal and spectral features are extracted from the audio recordings. Six different classification algorithms are compared using the extracted features. We focus on a single sensor setting to keep the computational effort low and evaluate its classification accuracy and real-time performance. The experimental evaluation is performed on our embedded platform using recorded data of about 150 vehicles. The results are applied in our ongoing research on fusing video, laser and acoustic data for real-time traffic monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信