Aleksander Palkowski, G. Redlarski, Gustaw Rzyman, M. Krawczuk
{"title":"基于肌电图和分类方法的肢体运动基本评价","authors":"Aleksander Palkowski, G. Redlarski, Gustaw Rzyman, M. Krawczuk","doi":"10.1109/IIPHDW.2018.8388382","DOIUrl":null,"url":null,"abstract":"Symptoms caused by cerebral palsy or stroke deprive a person partially or even completely of his ability to move. Nowadays we can observe more technologically advanced rehabilitation devices which incorporate biofeedback into the process of rehabilitation of such people. However, there is still a lack of devices that would analyse, assess, and control (independently or with limited support) specialised movement exercises. Here we propose an idea of an automated exercise evaluation mechanism based on machine learning techniques, such as: support vector machines, decision trees, random forest, and k-nearest neighbours. While being only a preliminary case study, our research showed that with appropriate processing even a 100% accuracy score can be achieved in classifying whether an exercise is executed well or not.","PeriodicalId":405270,"journal":{"name":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Basic evaluation of limb exercises based on electromyography and classification methods\",\"authors\":\"Aleksander Palkowski, G. Redlarski, Gustaw Rzyman, M. Krawczuk\",\"doi\":\"10.1109/IIPHDW.2018.8388382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symptoms caused by cerebral palsy or stroke deprive a person partially or even completely of his ability to move. Nowadays we can observe more technologically advanced rehabilitation devices which incorporate biofeedback into the process of rehabilitation of such people. However, there is still a lack of devices that would analyse, assess, and control (independently or with limited support) specialised movement exercises. Here we propose an idea of an automated exercise evaluation mechanism based on machine learning techniques, such as: support vector machines, decision trees, random forest, and k-nearest neighbours. While being only a preliminary case study, our research showed that with appropriate processing even a 100% accuracy score can be achieved in classifying whether an exercise is executed well or not.\",\"PeriodicalId\":405270,\"journal\":{\"name\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIPHDW.2018.8388382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPHDW.2018.8388382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Basic evaluation of limb exercises based on electromyography and classification methods
Symptoms caused by cerebral palsy or stroke deprive a person partially or even completely of his ability to move. Nowadays we can observe more technologically advanced rehabilitation devices which incorporate biofeedback into the process of rehabilitation of such people. However, there is still a lack of devices that would analyse, assess, and control (independently or with limited support) specialised movement exercises. Here we propose an idea of an automated exercise evaluation mechanism based on machine learning techniques, such as: support vector machines, decision trees, random forest, and k-nearest neighbours. While being only a preliminary case study, our research showed that with appropriate processing even a 100% accuracy score can be achieved in classifying whether an exercise is executed well or not.