高光谱图像分类中监督学习方法的FPGA加速

Kento Tajiri, T. Maruyama
{"title":"高光谱图像分类中监督学习方法的FPGA加速","authors":"Kento Tajiri, T. Maruyama","doi":"10.1109/FPT.2018.00051","DOIUrl":null,"url":null,"abstract":"Hyperspectral image classification is one of the most important techniques for analyzing hyperspectral image that have hundreds of spectrum luminance values. For this classification, supervised learning methods are widely used, but in general, they have a trade-off between their accuracy and computational complexity. In this paper, we propose an FPGA implementation of hyperspectral image classification based on a composite kernel method. Because of the large size of hyperspectral images, the data mapping becomes the most critical issue for achieving higher processing speed. Two data mapping approaches are discussed, and one of them that is most suitable for our target images is implemented on an FPGA. Its processing speed for 145×145 pixel images is fast enough for real-time processing, and its accuracy is comparable with other classification algorithms.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA Acceleration of a Supervised Learning Method for Hyperspectral Image Classification\",\"authors\":\"Kento Tajiri, T. Maruyama\",\"doi\":\"10.1109/FPT.2018.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image classification is one of the most important techniques for analyzing hyperspectral image that have hundreds of spectrum luminance values. For this classification, supervised learning methods are widely used, but in general, they have a trade-off between their accuracy and computational complexity. In this paper, we propose an FPGA implementation of hyperspectral image classification based on a composite kernel method. Because of the large size of hyperspectral images, the data mapping becomes the most critical issue for achieving higher processing speed. Two data mapping approaches are discussed, and one of them that is most suitable for our target images is implemented on an FPGA. Its processing speed for 145×145 pixel images is fast enough for real-time processing, and its accuracy is comparable with other classification algorithms.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高光谱图像分类是分析具有数百个光谱亮度值的高光谱图像的重要技术之一。对于这种分类,监督学习方法被广泛使用,但一般来说,它们在准确性和计算复杂性之间需要权衡。本文提出了一种基于复合核方法的高光谱图像分类的FPGA实现方法。由于高光谱图像的大尺寸,数据映射成为实现更高处理速度的关键问题。讨论了两种数据映射方法,其中一种最适合我们的目标图像在FPGA上实现。其对145×145像素图像的处理速度足够快,可以进行实时处理,其精度与其他分类算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA Acceleration of a Supervised Learning Method for Hyperspectral Image Classification
Hyperspectral image classification is one of the most important techniques for analyzing hyperspectral image that have hundreds of spectrum luminance values. For this classification, supervised learning methods are widely used, but in general, they have a trade-off between their accuracy and computational complexity. In this paper, we propose an FPGA implementation of hyperspectral image classification based on a composite kernel method. Because of the large size of hyperspectral images, the data mapping becomes the most critical issue for achieving higher processing speed. Two data mapping approaches are discussed, and one of them that is most suitable for our target images is implemented on an FPGA. Its processing speed for 145×145 pixel images is fast enough for real-time processing, and its accuracy is comparable with other classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信