一种基于gnn的移动RFID平台室内定位方法

Yunxiang Fu, Xiong Xiong, Zheng Liu, Xuhang Chen, Yi Liu, Z. Fu
{"title":"一种基于gnn的移动RFID平台室内定位方法","authors":"Yunxiang Fu, Xiong Xiong, Zheng Liu, Xuhang Chen, Yi Liu, Z. Fu","doi":"10.23919/SpliTech55088.2022.9854370","DOIUrl":null,"url":null,"abstract":"The indoor localization system is widely used in many scenarios. Here, radio frequency identification (RFID) technology has been approved to be an effective solution. Many RFID-based localization systems either require high accuracy systems to estimate trajectory such as Synthetic Aperture Radar (SAR)-based methods or are highly depend on the density of reference tags. The current study demonstrates the first application of Graph Neural Network (GNN) for 2D indoor localization using RFID technology. A graph regression approach was used to predict tag coordinates where comparisons were made between three popular GNN models, demonstrating the feasibility of GNNs. The best model achieved a mean absolute error of 5.74cm.","PeriodicalId":295373,"journal":{"name":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A GNN-based indoor localization method using mobile RFID platform\",\"authors\":\"Yunxiang Fu, Xiong Xiong, Zheng Liu, Xuhang Chen, Yi Liu, Z. Fu\",\"doi\":\"10.23919/SpliTech55088.2022.9854370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indoor localization system is widely used in many scenarios. Here, radio frequency identification (RFID) technology has been approved to be an effective solution. Many RFID-based localization systems either require high accuracy systems to estimate trajectory such as Synthetic Aperture Radar (SAR)-based methods or are highly depend on the density of reference tags. The current study demonstrates the first application of Graph Neural Network (GNN) for 2D indoor localization using RFID technology. A graph regression approach was used to predict tag coordinates where comparisons were made between three popular GNN models, demonstrating the feasibility of GNNs. The best model achieved a mean absolute error of 5.74cm.\",\"PeriodicalId\":295373,\"journal\":{\"name\":\"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SpliTech55088.2022.9854370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SpliTech55088.2022.9854370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

室内定位系统被广泛应用于许多场景。在这方面,射频识别(RFID)技术已被认为是一种有效的解决方案。许多基于rfid的定位系统要么需要高精度的系统来估计轨迹,如基于合成孔径雷达(SAR)的方法,要么高度依赖于参考标签的密度。目前的研究首次展示了使用RFID技术的图形神经网络(GNN)在二维室内定位中的应用。使用图回归方法预测标签坐标,并对三种流行的GNN模型进行了比较,证明了GNN的可行性。最佳模型的平均绝对误差为5.74cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GNN-based indoor localization method using mobile RFID platform
The indoor localization system is widely used in many scenarios. Here, radio frequency identification (RFID) technology has been approved to be an effective solution. Many RFID-based localization systems either require high accuracy systems to estimate trajectory such as Synthetic Aperture Radar (SAR)-based methods or are highly depend on the density of reference tags. The current study demonstrates the first application of Graph Neural Network (GNN) for 2D indoor localization using RFID technology. A graph regression approach was used to predict tag coordinates where comparisons were made between three popular GNN models, demonstrating the feasibility of GNNs. The best model achieved a mean absolute error of 5.74cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信