远距离目标检测的数据驱动街景布局估计

Donghao Zhang, Xuming He, Hanxi Li
{"title":"远距离目标检测的数据驱动街景布局估计","authors":"Donghao Zhang, Xuming He, Hanxi Li","doi":"10.1109/DICTA.2014.7008099","DOIUrl":null,"url":null,"abstract":"We present a street scene layout estimation method based on transferring layout annotation from a (large) image database and its application for distant object detection. Inspired by nonparametric scene labeling approaches, we estimate a scene's geometric layout by matching global image descriptors and retrieving the most similar layout configuration. Our label transfer is done for each sub-region of an image and a tiered scene model is used to integrate all the local label information into a coherent scene layout prediction. Given the geometric layout, we use a super-resolution method to zoom in the distance region and refine the search in object detection. On KITTI dataset, we show that we can reliably generate scene layout and improve the detection of distant cars over the state of the art DPM detector.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data-Driven Street Scene Layout Estimation for Distant Object Detection\",\"authors\":\"Donghao Zhang, Xuming He, Hanxi Li\",\"doi\":\"10.1109/DICTA.2014.7008099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a street scene layout estimation method based on transferring layout annotation from a (large) image database and its application for distant object detection. Inspired by nonparametric scene labeling approaches, we estimate a scene's geometric layout by matching global image descriptors and retrieving the most similar layout configuration. Our label transfer is done for each sub-region of an image and a tiered scene model is used to integrate all the local label information into a coherent scene layout prediction. Given the geometric layout, we use a super-resolution method to zoom in the distance region and refine the search in object detection. On KITTI dataset, we show that we can reliably generate scene layout and improve the detection of distant cars over the state of the art DPM detector.\",\"PeriodicalId\":146695,\"journal\":{\"name\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2014.7008099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于从(大型)图像数据库中传输布局注释的街景布局估计方法及其在远距离目标检测中的应用。受非参数场景标记方法的启发,我们通过匹配全局图像描述符和检索最相似的布局配置来估计场景的几何布局。我们对图像的每个子区域进行标签转移,并使用分层场景模型将所有局部标签信息集成到连贯的场景布局预测中。在给定几何布局的情况下,我们使用超分辨率方法对距离区域进行放大,并在目标检测中细化搜索。在KITTI数据集上,我们证明了我们可以可靠地生成场景布局,并在最先进的DPM检测器上改进对远处汽车的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Street Scene Layout Estimation for Distant Object Detection
We present a street scene layout estimation method based on transferring layout annotation from a (large) image database and its application for distant object detection. Inspired by nonparametric scene labeling approaches, we estimate a scene's geometric layout by matching global image descriptors and retrieving the most similar layout configuration. Our label transfer is done for each sub-region of an image and a tiered scene model is used to integrate all the local label information into a coherent scene layout prediction. Given the geometric layout, we use a super-resolution method to zoom in the distance region and refine the search in object detection. On KITTI dataset, we show that we can reliably generate scene layout and improve the detection of distant cars over the state of the art DPM detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信