有效和准确的同态比较

Olive Chakraborty, Martin Zuber
{"title":"有效和准确的同态比较","authors":"Olive Chakraborty, Martin Zuber","doi":"10.1145/3560827.3563375","DOIUrl":null,"url":null,"abstract":"We design and implement a new efficient and accurate fully homomorphic argmin/min or argmax/max comparison operator, which finds its application in numerous real-world use cases as a classifier. In particular we propose two versions of our algorithms using different tools from TFHE's functional bootstrapping toolkit. Our algorithm scales to any number of input data points with linear time complexity and logarithmic noise-propagation. Our algorithm is the fastest on the market for non-parallel comparisons with a high degree of accuracy and precision. For MNIST and SVHN datasets, which work under the PATE framework, using our algorithm, we achieve an accuracy of around 99.95% for both.","PeriodicalId":169703,"journal":{"name":"Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient and Accurate Homomorphic Comparisons\",\"authors\":\"Olive Chakraborty, Martin Zuber\",\"doi\":\"10.1145/3560827.3563375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design and implement a new efficient and accurate fully homomorphic argmin/min or argmax/max comparison operator, which finds its application in numerous real-world use cases as a classifier. In particular we propose two versions of our algorithms using different tools from TFHE's functional bootstrapping toolkit. Our algorithm scales to any number of input data points with linear time complexity and logarithmic noise-propagation. Our algorithm is the fastest on the market for non-parallel comparisons with a high degree of accuracy and precision. For MNIST and SVHN datasets, which work under the PATE framework, using our algorithm, we achieve an accuracy of around 99.95% for both.\",\"PeriodicalId\":169703,\"journal\":{\"name\":\"Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3560827.3563375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3560827.3563375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们设计并实现了一种新的高效、准确的全同态argmin/min或argmax/max比较运算符,该运算符作为分类器在许多实际用例中得到了应用。特别是,我们提出了两个版本的算法,使用来自TFHE的功能引导工具包的不同工具。我们的算法适用于任意数量的输入数据点,具有线性时间复杂度和对数噪声传播。我们的算法是市场上速度最快的非并行比较,具有高度的准确性和精度。对于在PATE框架下工作的MNIST和SVHN数据集,使用我们的算法,我们对两者的准确率都达到了99.95%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Accurate Homomorphic Comparisons
We design and implement a new efficient and accurate fully homomorphic argmin/min or argmax/max comparison operator, which finds its application in numerous real-world use cases as a classifier. In particular we propose two versions of our algorithms using different tools from TFHE's functional bootstrapping toolkit. Our algorithm scales to any number of input data points with linear time complexity and logarithmic noise-propagation. Our algorithm is the fastest on the market for non-parallel comparisons with a high degree of accuracy and precision. For MNIST and SVHN datasets, which work under the PATE framework, using our algorithm, we achieve an accuracy of around 99.95% for both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信