基于数据独立特征的多语言性别分类

T. Isbister, Lisa Kaati, Katie Cohen
{"title":"基于数据独立特征的多语言性别分类","authors":"T. Isbister, Lisa Kaati, Katie Cohen","doi":"10.1109/EISIC.2017.16","DOIUrl":null,"url":null,"abstract":"Gender classification is a well-researched problem, and state-of-the-art implementations achieve an accuracy of over 85%. However, most previous work has focused on gender classification of texts written in the English language, and in many cases, the results cannot be transferred to different datasets since the features used to train the machine learning models are dependent on the data. In this work, we investigate the possibilities to classify the gender of an author on five different languages: English, Swedish, French, Spanish, and Russian. We use features of the word counting program Linguistic Inquiry and Word Count (LIWC) with the benefit that these features are independent of the dataset. Our results show that by using machine learning with features from LIWC, we can obtain an accuracy of 79% and 73% depending on the language. We also, show some interesting differences between the uses of certain categories among the genders in different languages.","PeriodicalId":436947,"journal":{"name":"2017 European Intelligence and Security Informatics Conference (EISIC)","volume":"1079 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Gender Classification with Data Independent Features in Multiple Languages\",\"authors\":\"T. Isbister, Lisa Kaati, Katie Cohen\",\"doi\":\"10.1109/EISIC.2017.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender classification is a well-researched problem, and state-of-the-art implementations achieve an accuracy of over 85%. However, most previous work has focused on gender classification of texts written in the English language, and in many cases, the results cannot be transferred to different datasets since the features used to train the machine learning models are dependent on the data. In this work, we investigate the possibilities to classify the gender of an author on five different languages: English, Swedish, French, Spanish, and Russian. We use features of the word counting program Linguistic Inquiry and Word Count (LIWC) with the benefit that these features are independent of the dataset. Our results show that by using machine learning with features from LIWC, we can obtain an accuracy of 79% and 73% depending on the language. We also, show some interesting differences between the uses of certain categories among the genders in different languages.\",\"PeriodicalId\":436947,\"journal\":{\"name\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"1079 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC.2017.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

性别分类是一个经过充分研究的问题,最先进的实现实现了85%以上的准确率。然而,大多数先前的工作都集中在英语文本的性别分类上,并且在许多情况下,由于用于训练机器学习模型的特征依赖于数据,因此结果不能转移到不同的数据集。在这项工作中,我们研究了五种不同语言(英语、瑞典语、法语、西班牙语和俄语)对作者性别进行分类的可能性。我们使用了单词计数程序语言查询和单词计数(LIWC)的特征,这些特征独立于数据集。我们的结果表明,通过使用来自LIWC的特征的机器学习,我们可以获得79%和73%的准确率,具体取决于语言。我们还展示了不同语言中不同性别对某些类别的使用之间的一些有趣的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender Classification with Data Independent Features in Multiple Languages
Gender classification is a well-researched problem, and state-of-the-art implementations achieve an accuracy of over 85%. However, most previous work has focused on gender classification of texts written in the English language, and in many cases, the results cannot be transferred to different datasets since the features used to train the machine learning models are dependent on the data. In this work, we investigate the possibilities to classify the gender of an author on five different languages: English, Swedish, French, Spanish, and Russian. We use features of the word counting program Linguistic Inquiry and Word Count (LIWC) with the benefit that these features are independent of the dataset. Our results show that by using machine learning with features from LIWC, we can obtain an accuracy of 79% and 73% depending on the language. We also, show some interesting differences between the uses of certain categories among the genders in different languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信