基于压缩采样的MVDR频谱感知

Y. Wang, A. Pandharipande, G. Leus
{"title":"基于压缩采样的MVDR频谱感知","authors":"Y. Wang, A. Pandharipande, G. Leus","doi":"10.1109/CIP.2010.5604239","DOIUrl":null,"url":null,"abstract":"We propose a compressive sampling (CS) based MVDR spectrum estimator, which estimates the wideband spectrum from the compressed signals with sub-Nyquist-rate sampling. To analyze detection performance, we derive the statistics of the estimated CS MVDR spectrum considering finite samples. We also show that different compression matrices produce different levels of signal leakage and influence the computation of detection thresholds.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Compressive sampling based MVDR spectrum sensing\",\"authors\":\"Y. Wang, A. Pandharipande, G. Leus\",\"doi\":\"10.1109/CIP.2010.5604239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a compressive sampling (CS) based MVDR spectrum estimator, which estimates the wideband spectrum from the compressed signals with sub-Nyquist-rate sampling. To analyze detection performance, we derive the statistics of the estimated CS MVDR spectrum considering finite samples. We also show that different compression matrices produce different levels of signal leakage and influence the computation of detection thresholds.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一种基于压缩采样(CS)的MVDR频谱估计器,它通过亚奈奎斯特速率采样从压缩信号中估计宽带频谱。为了分析检测性能,我们推导了有限样本下估计的CS MVDR谱的统计量。我们还表明,不同的压缩矩阵会产生不同程度的信号泄漏,并影响检测阈值的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive sampling based MVDR spectrum sensing
We propose a compressive sampling (CS) based MVDR spectrum estimator, which estimates the wideband spectrum from the compressed signals with sub-Nyquist-rate sampling. To analyze detection performance, we derive the statistics of the estimated CS MVDR spectrum considering finite samples. We also show that different compression matrices produce different levels of signal leakage and influence the computation of detection thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信