利用唾液和呼吸生物标志物和数据挖掘技术评估心力衰竭患者的药物依从性

E. Tripoliti, Theofilos G. Papadopoulos, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis
{"title":"利用唾液和呼吸生物标志物和数据挖掘技术评估心力衰竭患者的药物依从性","authors":"E. Tripoliti, Theofilos G. Papadopoulos, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis","doi":"10.1109/CBMS.2017.68","DOIUrl":null,"url":null,"abstract":"The aim of this work is to estimate the medication adherence of patients with heart failure through the application of a data mining approach on a dataset including information from saliva and breath biomarkers. The method consists of two stages. In the first stage, a model for the estimation of adherence risk of a patient, exploiting anamnestic and instrumental data, is applied. In the second stage, the output of the model, accompanied with data from saliva and breath biomarkers, is given as input to a classification model for determining if the patient is adherent, in terms of medication. The method is evaluated on a dataset of 29 patients and the achieved accuracy is 96%.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of Heart Failure Patients Medication Adherence through the Utilization of Saliva and Breath Biomarkers and Data Mining Techniques\",\"authors\":\"E. Tripoliti, Theofilos G. Papadopoulos, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis\",\"doi\":\"10.1109/CBMS.2017.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to estimate the medication adherence of patients with heart failure through the application of a data mining approach on a dataset including information from saliva and breath biomarkers. The method consists of two stages. In the first stage, a model for the estimation of adherence risk of a patient, exploiting anamnestic and instrumental data, is applied. In the second stage, the output of the model, accompanied with data from saliva and breath biomarkers, is given as input to a classification model for determining if the patient is adherent, in terms of medication. The method is evaluated on a dataset of 29 patients and the achieved accuracy is 96%.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作的目的是通过在包括唾液和呼吸生物标志物信息的数据集上应用数据挖掘方法来估计心力衰竭患者的药物依从性。该方法包括两个阶段。在第一阶段,一个模型的依从性风险的估计病人,利用记忆和仪器数据,是应用。在第二阶段,模型的输出,伴随着唾液和呼吸生物标志物的数据,作为分类模型的输入,用于确定患者在药物方面是否坚持。该方法在29例患者的数据集上进行了评估,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Heart Failure Patients Medication Adherence through the Utilization of Saliva and Breath Biomarkers and Data Mining Techniques
The aim of this work is to estimate the medication adherence of patients with heart failure through the application of a data mining approach on a dataset including information from saliva and breath biomarkers. The method consists of two stages. In the first stage, a model for the estimation of adherence risk of a patient, exploiting anamnestic and instrumental data, is applied. In the second stage, the output of the model, accompanied with data from saliva and breath biomarkers, is given as input to a classification model for determining if the patient is adherent, in terms of medication. The method is evaluated on a dataset of 29 patients and the achieved accuracy is 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信