预测查询语言

D. Shah, S. Burle, V. Doshi, Ying-zong Huang, Balaji Rengarajan
{"title":"预测查询语言","authors":"D. Shah, S. Burle, V. Doshi, Ying-zong Huang, Balaji Rengarajan","doi":"10.1109/ALLERTON.2018.8636042","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an enhanced schema-less database language that supports prediction queries natively-the Prediction Query Language (PQL). Data in the PQL representation can be naturally modeled as an exchangeable multi-dimensional array. The seminal result by Aldous and Hoover (1980s), generalizing the classical result of De Finetti (1937), provides a canonical latent variable model characterization for such an exchangeable multi-dimensional array. We present a three-layer neural-network-based architecture that encodes this latent variable model representation and realizes an atomic prediction query. Using PQL, learning problems of Regression, Classification, Time-Series, Matrix and Tensor Completion can be solved simply by defining “schema” in PQL and then running predictive query. With the help of various benchmark datasets for each of Classification, Regression, Time Series and Matrix/Tensor Completion, we find that this out-of-the-box performance of PQL is comparable with the state-of-the-art results obtained with solutions tailored specifically for the scenarios.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction Query Language\",\"authors\":\"D. Shah, S. Burle, V. Doshi, Ying-zong Huang, Balaji Rengarajan\",\"doi\":\"10.1109/ALLERTON.2018.8636042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an enhanced schema-less database language that supports prediction queries natively-the Prediction Query Language (PQL). Data in the PQL representation can be naturally modeled as an exchangeable multi-dimensional array. The seminal result by Aldous and Hoover (1980s), generalizing the classical result of De Finetti (1937), provides a canonical latent variable model characterization for such an exchangeable multi-dimensional array. We present a three-layer neural-network-based architecture that encodes this latent variable model representation and realizes an atomic prediction query. Using PQL, learning problems of Regression, Classification, Time-Series, Matrix and Tensor Completion can be solved simply by defining “schema” in PQL and then running predictive query. With the help of various benchmark datasets for each of Classification, Regression, Time Series and Matrix/Tensor Completion, we find that this out-of-the-box performance of PQL is comparable with the state-of-the-art results obtained with solutions tailored specifically for the scenarios.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8636042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种增强的无模式数据库语言-预测查询语言(PQL),它支持本地预测查询。PQL表示中的数据可以自然地建模为可交换的多维数组。Aldous和Hoover(1980年代)的开创性结果推广了De Finetti(1937)的经典结果,为这种可交换的多维数组提供了典型的潜在变量模型表征。我们提出了一种基于三层神经网络的架构,对这种潜在变量模型表示进行编码,并实现了原子预测查询。使用PQL,可以简单地通过在PQL中定义“模式”,然后运行预测查询来解决回归、分类、时间序列、矩阵和张量补全等学习问题。在分类、回归、时间序列和矩阵/张量补全的各种基准数据集的帮助下,我们发现PQL的这种开箱性能与专门为场景量身定制的解决方案所获得的最先进的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction Query Language
In this paper, we introduce an enhanced schema-less database language that supports prediction queries natively-the Prediction Query Language (PQL). Data in the PQL representation can be naturally modeled as an exchangeable multi-dimensional array. The seminal result by Aldous and Hoover (1980s), generalizing the classical result of De Finetti (1937), provides a canonical latent variable model characterization for such an exchangeable multi-dimensional array. We present a three-layer neural-network-based architecture that encodes this latent variable model representation and realizes an atomic prediction query. Using PQL, learning problems of Regression, Classification, Time-Series, Matrix and Tensor Completion can be solved simply by defining “schema” in PQL and then running predictive query. With the help of various benchmark datasets for each of Classification, Regression, Time Series and Matrix/Tensor Completion, we find that this out-of-the-box performance of PQL is comparable with the state-of-the-art results obtained with solutions tailored specifically for the scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信