基于二维半马尔可夫模型的边缘检测技术性能评价方法

D. Dubinin, V. Geringer, A. Kochegurov, K. Reif
{"title":"基于二维半马尔可夫模型的边缘检测技术性能评价方法","authors":"D. Dubinin, V. Geringer, A. Kochegurov, K. Reif","doi":"10.1109/CICA.2014.7013248","DOIUrl":null,"url":null,"abstract":"The essay outlines one particular possibility of efficient evaluating the Performance of edge detector algorithms. Three generally known and published algorithms (Canny, Marr, Shen) were analysed by way of example. The analysis is based on two-dimensional signals created by means of two-dimensional Semi-Markov Model and subsequently provided with an additive Gaussian noise component. Five quality metrics allow an objective comparison of the algorithms.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An efficient method to evaluate the performance of edge detection techniques by a two-dimensional Semi-Markov model\",\"authors\":\"D. Dubinin, V. Geringer, A. Kochegurov, K. Reif\",\"doi\":\"10.1109/CICA.2014.7013248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The essay outlines one particular possibility of efficient evaluating the Performance of edge detector algorithms. Three generally known and published algorithms (Canny, Marr, Shen) were analysed by way of example. The analysis is based on two-dimensional signals created by means of two-dimensional Semi-Markov Model and subsequently provided with an additive Gaussian noise component. Five quality metrics allow an objective comparison of the algorithms.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文概述了有效评估边缘检测器算法性能的一种特殊可能性。通过实例分析了三种已知和已发表的算法(Canny, Marr, Shen)。该分析基于二维半马尔可夫模型产生的二维信号,并随后提供加性高斯噪声分量。五个质量指标允许对算法进行客观比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient method to evaluate the performance of edge detection techniques by a two-dimensional Semi-Markov model
The essay outlines one particular possibility of efficient evaluating the Performance of edge detector algorithms. Three generally known and published algorithms (Canny, Marr, Shen) were analysed by way of example. The analysis is based on two-dimensional signals created by means of two-dimensional Semi-Markov Model and subsequently provided with an additive Gaussian noise component. Five quality metrics allow an objective comparison of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信