{"title":"一个高速里德-所罗门编解码器芯片采用向前看的架构","authors":"J. Chang, C. Shung","doi":"10.1109/APCCAS.1994.514551","DOIUrl":null,"url":null,"abstract":"Reed-Solomon (RS) code is one of the most important error controlling codes in digital communications. It is especially powerful for multiple error correction, thus suitable for random and burst error correction. In this paper, we propose a lookforward architecture that can reduce the number of cycles in the longer pipeline stage, thus resulting in a more efficient use of the pipelined structure. We implemented a (255,239) RS codec chip using the lookforward architecture. Both the code length and error correcting capability of the codec chip are programmable. This chip consists of 310,000 transistors in 61 mm/sup 2/ area with a 0.8 /spl mu/m SPDM CMOS technology.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A high speed Reed-Solomon codec chip using lookforward architecture\",\"authors\":\"J. Chang, C. Shung\",\"doi\":\"10.1109/APCCAS.1994.514551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reed-Solomon (RS) code is one of the most important error controlling codes in digital communications. It is especially powerful for multiple error correction, thus suitable for random and burst error correction. In this paper, we propose a lookforward architecture that can reduce the number of cycles in the longer pipeline stage, thus resulting in a more efficient use of the pipelined structure. We implemented a (255,239) RS codec chip using the lookforward architecture. Both the code length and error correcting capability of the codec chip are programmable. This chip consists of 310,000 transistors in 61 mm/sup 2/ area with a 0.8 /spl mu/m SPDM CMOS technology.\",\"PeriodicalId\":231368,\"journal\":{\"name\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.1994.514551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high speed Reed-Solomon codec chip using lookforward architecture
Reed-Solomon (RS) code is one of the most important error controlling codes in digital communications. It is especially powerful for multiple error correction, thus suitable for random and burst error correction. In this paper, we propose a lookforward architecture that can reduce the number of cycles in the longer pipeline stage, thus resulting in a more efficient use of the pipelined structure. We implemented a (255,239) RS codec chip using the lookforward architecture. Both the code length and error correcting capability of the codec chip are programmable. This chip consists of 310,000 transistors in 61 mm/sup 2/ area with a 0.8 /spl mu/m SPDM CMOS technology.